• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

螯合剂强化电动去除黄土中铜铅金属的试验与机理研究

郭超峰, 郑文杰, 胡文乐, 康农波

郭超峰, 郑文杰, 胡文乐, 康农波. 螯合剂强化电动去除黄土中铜铅金属的试验与机理研究[J]. 岩土工程学报, 2024, 46(10): 2183-2191. DOI: 10.11779/CJGE20220737
引用本文: 郭超峰, 郑文杰, 胡文乐, 康农波. 螯合剂强化电动去除黄土中铜铅金属的试验与机理研究[J]. 岩土工程学报, 2024, 46(10): 2183-2191. DOI: 10.11779/CJGE20220737
GUO Chaofeng, CHENG Wen-Chieh, HU Wenle, KANG Nongbo. Experimental study and mechanism analysis of chelating agent enhanced on electrokinetic removal of copper and lead from loess[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2183-2191. DOI: 10.11779/CJGE20220737
Citation: GUO Chaofeng, CHENG Wen-Chieh, HU Wenle, KANG Nongbo. Experimental study and mechanism analysis of chelating agent enhanced on electrokinetic removal of copper and lead from loess[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2183-2191. DOI: 10.11779/CJGE20220737

螯合剂强化电动去除黄土中铜铅金属的试验与机理研究  English Version

基金项目: 

先进绿色建筑材料与结构防灾研究创新团队,陕西省重点科技创新团队项目 2022TD-05

详细信息
    作者简介:

    郭超峰(1997—),男,硕士,主要研究方向为环境岩土和岩土工程。E-mail:chaofengguo@xauat.edu.cn

    通讯作者:

    郑文杰, E-mail: w-c.cheng@xauat.edu.cn

  • 中图分类号: TU443

Experimental study and mechanism analysis of chelating agent enhanced on electrokinetic removal of copper and lead from loess

  • 摘要: 中国西部地区高速发展导致黄土受到重金属污染的问题日益严重。电动修复因其出色的可操作性而受到关注,然而由于极化现象和重金属在阴极附近沉淀等因素导致电动修复效率降低。因此,以铜铅污染黄土为研究对象,将螯合剂耦合电动修复的技术同时结合阴极电解液投加,研究酒石酸、柠檬酸、EDTA 3种螯合剂及作为阴极电极液对黄土中铜铅金属的去除效率影响并探讨其强化去除机理。结果表明:酒石酸、柠檬酸、EDTA均可通过络合作用提高铜、铅金属的迁移能力,使铜、铅金属的去除效率有不同程度的提升,其中以阴极附近区域的铜、铅金属去除效果提升较为明显;在3种螯合剂中,EDTA由于螯合能力较强,能在不同的pH范围内与铜、铅金属反应,从而生成较为稳定的络合物,强化了电动修复效率;与对照组相比,EDTA通过与重金属进行六原子配位而形成稳定的络合物,将其他形态的重金属向迁移能力较强、较易去除的可交换态进行转化,把铜、铅金属的整体去除效率分别提高到55.4%,27.2%。
    Abstract: The rapid development in the western areas of China has resulted in a growing problem of heavy metal pollution in the loess land. The electrokinetic remediation has gained attention due to its great maneuverability. However, certain factors such as polarization phenomena and precipitation of heavy metals near the cathode have lead to a decrease in the efficiency of the electrokinetic remediation. Therefore, focusing on studying the copper and lead-contaminated loess as the research subject, by combining the technology of chelating agent coupling electric remediation with the addition of catholyte, the effects of tartaric acid, citric acid and EDTA as the cathode electrode liquid on the removal efficiency of copper and lead metals in loess as well as the removal mechanism are investigated. The results indicate that the tartaric acid, citric acid and EDTA can enhance the migration capability of copper and lead through complexation, thereby improving the removal efficiency of these metals to varying estents. The improvement in the removal efficiency of copper and lead metals is particularly noticeable in the vicinity of the cathode. Among the three chelating agents, the EDTA exhibits strong chelating capability and can react with copper and lead metals across different pH ranges, resulting in the formation of a more stable complex and enhancing the removal efficiency. Compared with the control group, the EDTA forms a stable complex by coordinating with heavy metals through six atoms, converting them into exchangeable states with enhanced migration capabilities, and making them easier to remove. As a result, the overall removal efficiencies of copper and lead increase to 55.4% and 27.2%, respectively.
  • 图  1   试验所用黄土的粒径颗分曲线

    Figure  1.   Grain-size distribution curve of the loess

    图  2   电动修复装置示意图

    Figure  2.   Schematic illustration of the electrokinetic reactor

    图  3   电动修复过程中pH的变化

    Figure  3.   Variations of pH during electrokinetic remediation

    图  4   电动修复后试样各截面电导率的分布

    Figure  4.   Distributions of electrical conductivity in different sections of sample after electrokinetic remediation

    图  5   电动修复过程中电流的变化

    Figure  5.   Variations of current during electrokinetic remediation

    图  6   电动修复过程中电渗流的变化

    Figure  6.   Variations of electroosmotic flow during electrokinetic remediation

    图  7   试样各截面重金属Cu、Pb的去除效率

    Figure  7.   Removal efficiencies of heavy metals Cu and Pb in different sections of sample

    图  8   试样各截面不同形态重金属Cu、Pb的残余浓度

    Figure  8.   Residual concentrations of different forms of heavy metals Cu and Pb in different sections of sample

    图  9   EDTA强化电动修复作用示意图

    Figure  9.   Schematic diagram of EDTA-enhanced electrokinetic remediation

    图  10   EDTA和重金属的络合反应示意图[18]

    Figure  10.   Schematic diagram of complexation reaction between EDTA and heavy metals[18]

    表  1   黄土初始物理化学特性

    Table  1   Initial physicochemical properties of loess

    理化参数 数值 理化参数 数值
    砂粒/% 3.3 液限/% 31.6
    粉粒/% 87.4 塑限/% 19.5
    黏粒/% 9.3 渗透系数/(cm·s-1) 2.55×10-6
    孔隙比 0.898 有机质含量/(mg·g-1) 4.1
    重度/(kN·m-3) 16.2 pH值 8.30
    相对质量密度 2.69 电导率/(μs·cm-1) 244
    含水率/% 16.5 比表面积/(m2·g-1) 24.1
    下载: 导出CSV

    表  2   强化试验方法设计

    Table  2   Design of enhanced EK experiments

    编号 阳极电极液 阴极电解液 电场强度/
    (V·cm-1)
    修复时
    间/h
    EK1 去离子水 去离子水 1.5 72
    EK2 去离子水 0.1 mol/L酒石酸 1.5 72
    EK3 去离子水 0.1 mol/L柠檬酸 1.5 72
    EK4 去离子水 0.1MEDTA-2Na 1.5 72
    下载: 导出CSV
  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 国土资源通讯, 2014(8): 26-29.

    Ministry of Environmental Protection, Ministry of Land and Resources. Bulletin of national soil pollution survey[J]. National Land & Resources Information, 2014(8): 26-29. (in Chinese)

    [2] 古冰, 鲁黛迪, 蒯文婧. 中国污染密集型产业区域转移的趋势、行业特征及区位选择[J]. 统计与决策, 2013(18): 77-81.

    GU Bing, LU Daidi, KUAI Wenjing. The trend, industry characteristics and location choice of regional transfer of pollution-intensive industries in China[J]. Statistics & Decision, 2013(18): 77-81. (in Chinese)

    [3] 杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. doi: 10.3969/j.issn.1000-7598.2011.01.019

    DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.019

    [4]

    CHEN X Y, DEEPIKA K, Cao C J, et al. A review on remediation technologies for nickel-contaminated soil[J]. Human and Ecological Risk Assessment: An International Journal, 2020, 26(3): 571-585. doi: 10.1080/10807039.2018.1539639

    [5]

    WANG Y C, LI A, CUI C W. Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability[J]. Chemosphere: Environmental Toxicology and Risk Assessment, 2021, 265: 1-17.

    [6] 薛浩, 孟凡生, 王业耀, 等. 酸化-电动强化修复铬渣场地污染土壤[J]. 环境科学研究, 2015, 28(8): 1317-1323.

    XUE Hao, MENG Fansheng, WANG Yeyao, et al. Remediation of chromium residue-contaminated soil by preacidification electrokinetic remediation[J]. Research of Environmental Sciences, 2015, 28(8): 1317-1323. (in Chinese)

    [7] 杜玮, 张光生, 邹华, 等. 铬-菲复合污染土壤的电动修复效果[J]. 环境科学研究, 2016, 29(8): 1163-1169.

    DU Wei, ZHANG Guangsheng, ZOU Hua, et al. Electrokinetic remediation of chromium-phenanthrene combined contaminated soils[J]. Research of Environmental Sciences, 2016, 29(8): 1163-1169. (in Chinese)

    [8]

    KIM W S, KIM S O, KIM K W. Enhanced electrokinetic extraction of heavy metals from soils assisted by ion exchange membranes. [J]. Journal of Hazardous Materials, 2005, 118(1/3): 93-102.

    [9]

    GIANNIS A, NIKOLAOU A, PENTARI D, et al. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils[J]. Environmental Pollution, 2009, 157(12): 3379-3386. doi: 10.1016/j.envpol.2009.06.030

    [10]

    SUZUKI T, NIINAE M, KOGA T, et al. EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440: 145-150.

    [11]

    MASI M, IANNELLI R, LOSITO G. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity[J]. Environmental Science and Pollution Research, 2016, 23(11): 10566-10576. doi: 10.1007/s11356-015-5563-7

    [12] 周书葵, 张建, 刘迎九, 等. 电动力联合可渗透反应墙修复铀污染土壤试验研究[J]. 应用化工, 2020, 49(2): 355-358. doi: 10.3969/j.issn.1671-3206.2020.02.020

    ZHOU Shukui, ZHANG Jian, LIU Yingjiu, et al. Experimental study on the combined repair of uranium-contaminated soil by composite electrodynamics with permeable reaction barrier[J]. Applied Chemical Industry, 2020, 49(2): 355-358. (in Chinese) doi: 10.3969/j.issn.1671-3206.2020.02.020

    [13]

    GHOBADI R, ALTAEE A, ZHOU J L, et al. Enhanced copper removal from contaminated kaolinite soil by electrokinetic process using compost reactive filter media[J]. Journal of Hazardous Materials, 2021, 402: 123891. doi: 10.1016/j.jhazmat.2020.123891

    [14] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [15]

    TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry (Washington), 1979, 51(7): 844-851. doi: 10.1021/ac50043a017

    [16] 储陆平, 周书葵, 荣丽杉, 等. 电动修复重金属污染土壤的研究进展[J]. 应用化工, 2020, 49(11): 2853-2858, 2863. doi: 10.3969/j.issn.1671-3206.2020.11.040

    CHU Luping, ZHOU Shukui, RONG Lishan, et al. Research progress on electric remediation of heavy metal contaminated soil[J]. Applied Chemical Industry, 2020, 49(11): 2853-2858, 2863. (in Chinese) doi: 10.3969/j.issn.1671-3206.2020.11.040

    [17]

    HU W L, CHENG W C, WEN S J. Investigating the effect of degree of compaction, initial water content, and electric field intensity on electrokinetic remediation of an artificially Cu- and Pb-contaminated loess[J]. Acta Geotechnica, 2023, 18(2): 937-949. doi: 10.1007/s11440-022-01602-9

    [18] 李帅. 铅污染土的增强电动修复试验研究[D]. 大连: 大连理工大学, 2020.

    LI Shuai. Experimental Study on Enhanced Electrokinetic Remediation of Lead-Contaminated Soil[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)

    [19] 王友东. 电动淋洗联合修复铜铅污染土壤的研究[D]. 北京: 中国地质大学(北京), 2016.

    WANG You-dong. Study on the Remediation from Copper and Lead Polluted Soil by Electrokinetic Combining with Washing[D]. Beijing: China University of Geosciences (Beijing), 2016. (in Chinese)

    [20]

    SONG Y, CANG L, ZUO Y L, et al. EDTA-enhanced electrokinetic remediation of aged electroplating contaminated soil assisted by combining dual cation-exchange membranes and circulation methods[J]. Chemosphere: Environmental Toxicology and Risk Assessment, 2020, 243: 1-12.

    [21]

    REDDY K R. Electrokinetic remediation of soils at complex contaminated sites: Technology status, challenges, and opportunities[C]// Proceedings of Environmental Science, Engineering, London, 2013.

    [22]

    SONG Y, CANG L, XU H T, et al. Migration and de complexation of metal-chelate complexes causing metal accumulation phenomenon after chelate-enhanced electrokinetic remediation[J]. Journal of Hazardous Materials, 2019, 377: 106-112. doi: 10.1016/j.jhazmat.2019.05.055

    [23] 林君锋, 崔喜勤, 王果, 等. 动电修复不同形态重金属污染土壤效果研究[J]. 环境工程学报, 2010, 4(11): 2585-2589.

    LIN Junfeng, CUI Xiqin, WANG Guo, et al. Study on electrokinetic remediation efficiencies of different fractions of heavy metals in soils[J]. Chinese Journal of Environmental Engineering, 2010, 4(11): 2585-2589. (in Chinese)

图(10)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 网络出版日期:  2024-05-10
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回