Bearing effect of prestressed bolt-anchored structures and mechanical analysis of surrounding rock
-
摘要: 隧道中锚杆与围岩作用机理比较复杂,设计多偏于类比法和经验法,以锚杆在连续均匀地层中形成锚固结构为出发点,建立锚固结构承载强度表达式,并确定锚杆设计参数。通过对锚固结构承载特性分析,得到各影响因素对承载强度的贡献程度,在此基础上提出了“支护力放大系数”和“锚固界限强度”概念,再将锚固结构整体考虑并等效成支护力对隧道围岩应力分布、塑性区、位移进行重新求解,最终结合数值模拟和算例验证。研究结果表明:锚固结构对锚杆支护力具有放大作用,对隧道深部围岩也提供一个较强的支护力,锚固结构强度影响程度由大到小依次为力学参数、锚固厚度、支护强度,其中力学参数对锚固承载强度起着至关重要作用,合理锚固厚度为洞径的0.4~0.8倍,进一步提出了围岩稳定性控制原则。数值模拟中锚杆支护、等效力支护与理论结果加以比较,隧道周边的塑性区、应力分布、位移基本一致,可为锚杆支护下隧道围岩控制提供一种科学的分析方法。Abstract: Because of complicated interaction mechanism between bolt and surrounding rock in tunnels, the design is mostly based on the analogy method and experience. Starting from the anchorage structure formed by the bolt in continuously uniform strata, a formula for bearing strength is established, and the parameters in the formula are determined. By analyzing the bearing characteristics of anchorage structure, the influence degree of different factors on the bearing strength can be obtained. On this basis, the definitions of "amplification factor of supporting force " and "strength of anchor circumscription" are put forward. Besides, the anchorage structure can be equivalent to the support stress so as to resolve the stress distribution of tunnel surrounding rock, plastic zone and displacement, which is verified by the numerical simulation and numerical example. The results show that anchorage structure has an amplification effect on bolting force and provides a strong supporting force in the surrounding rock of deep tunnel. The influence degree structure for the strength of anchorage is followed by mechanical parameters, anchoring thickness and supporting strength from large to small, among which the mechanical parameters play a crucial role in the bearing strength of anchorage, and the reasonable anchoring thickness is 0.4~0.8 times the diameter of the tunnel. Furthermore, the stability control principle of surrounding rock is proposed. By comparing the theoretical results with the bolt support and equal effectiveness support in the numerical simulation, the plastic zone, stress distribution and displacement around the tunnel are basically the same. The proposed theories may provide a scientific analysis method for the stability control of the tunnel with bolt support.
-
-
表 1 分析参数
Table 1 Analytical parameters
原始参数 开挖扰动参数 支护参数 参数 数值 参数 数值 参数 数值 r0/m 2 — — LS /mm 2400 po/MPa 2 — — QS /kN 80 ν 0.2 — — SL*ST/mm 800*800 σci/MPa 50 GSI 40 d /mm 22 E/MPa 5000 Em/MPa 3976.4 Em*/MPa 4101.1 c/MPa 0.276 cp 0.055 cp* 0.058 φ/(°) 35 φp 30 φp* 33.5 表 2 塑性区范围比较
Table 2 Comparison of plastic zones
(m) Fenner解 理论值 锚杆支护 等效力支护 2.57 4.89 4.71~4.92 4.63~4.94 -
[1] FREEMAN T J. The behaviour of fully-bonded rock bolts in the Kielder experimental tunnel[J]. Tunnels and Tunnelling, 1978, 10(5): 37–40.
[2] CHEN Y. Experimental study and stress analysis of rock bolt anchorage performance[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(5): 428–437. doi: 10.1016/j.jrmge.2014.06.002
[3] 赵东平, 王卢伟, 喻渝, 等. 隧道系统锚杆研究现状与发展方向[J]. 土木工程学报, 2020, 53(8): 116–128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008013.htm ZHAO Dong-ping, WANG Lu-wei, YU Yu, et al. Research status and development direction of tunnel system bolt[J]. China Civil Engineering Journal, 2020, 53(8): 116–128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008013.htm
[4] LUNARDI P. Fibre-glass tubes to stabilise the face of tunnels in difficult cohesive soils[J]. Mater Eng, 1995, 6: 107–165.
[5] 姚强岭, 王伟男, 孟国胜, 等. 树脂锚杆不同锚固长度锚固段受力特征试验研究[J]. 采矿与安全工程学报, 2019, 36(4): 643–649. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201904001.htm YAO Qiang-ling, WANG Wei-nan, MENG Guo-sheng, et al. Experimental study on mechanical characteristics of resin bolt anchoring section with different anchorage lengths[J]. Journal of Mining & Safety Engineering, 2019, 36(4): 643–649. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201904001.htm
[6] 刘建庄, 张农, 韩昌良. 弹性拉拔中锚杆轴力和剪力分布力学计算[J]. 中国矿业大学学报, 2012, 41(3): 344–348. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201203003.htm LIU Jian-zhuang, ZHANG Nong, HAN Chang-liang. Elastic stress distributions: axial and shear stress distributions in an anchor bolt during a pullout test[J]. Journal of China University of Mining & Technology, 2012, 41(3): 344–348. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201203003.htm
[7] 郭震山, 郑俊杰, 崔岚, 等. 聚酯锚杆与传统锚杆的力学性能及支护效果比较分析[J]. 岩土工程学报, 2015, 37(增刊1): 202–206. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1039.htm GUO Zhen-shan, ZHENG Jun-jie, CUI Lan, et al. Comparative analysis of mechanical properties and support effects of polyester bolt and traditional steel bolt[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 202–206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S1039.htm
[8] 吴学震, 王刚, 蒋宇静, 等. 拉压耦合大变形锚杆作用机理及其试验研究[J]. 岩土工程学报, 2015, 37(1): 139–147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501020.htm WU Xue-zhen, WANG Gang, JIANG Yu-jing, et al. Mechanism of CTC-yield bolts and its experimental research[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 139–147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501020.htm
[9] 姚显春, 李宁, 陈蕴生. 隧洞中全长黏结式锚杆的受力分析[J]. 岩石力学与工程学报, 2005, 24(13): 2272–2276. doi: 10.3321/j.issn:1000-6915.2005.13.012 YAO Xian-chun, LI Ning, CHEN Yun-sheng. Theoretical solution for shear stresses on interface of fully grouted bolt in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2272–2276. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.13.012
[10] 方勇, 何川. 全长黏结式锚杆与隧道围岩相互作用研究[J]. 工程力学, 2007, 24(6): 111–116. doi: 10.3969/j.issn.1000-4750.2007.06.019 FANG Yong, HE Chuan. Study on the interaction of whole bonded rock bolt and tunnel surrounding rock[J]. Engineering Mechanics, 2007, 24(6): 111–116. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.06.019
[11] CAI Y, ESAKI T, JIANG Y J. An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling[J]. Tunnelling and Underground Space Technology, 2004, 19(6): 607–618. doi: 10.1016/j.tust.2004.02.129
[12] 徐金海, 石炳华, 王云海. 锚固体强度与组合拱承载能力的研究与应用[J]. 中国矿业大学学报, 1999, 28(5): 482–485. doi: 10.3321/j.issn:1000-1964.1999.05.018 XU Jin-hai, SHI Bing-hua, WANG Yun-hai. Research on strength of reinforced unit and bearing capability of broken rock arch and its application[J]. Journal of China University of Mining & Technology, 1999, 28(5): 482–485. (in Chinese) doi: 10.3321/j.issn:1000-1964.1999.05.018
[13] 余伟健, 高谦, 朱川曲. 深部软弱围岩叠加拱承载体强度理论及应用研究[J]. 岩石力学与工程学报, 2010, 29(10): 2134–2142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010026.htm YU Wei-jian, GAO Qian, ZHU Chuan-qu. Study of strength theory and application of overlap arch bearing body for deep soft surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2134–2142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010026.htm
[14] 文竞舟, 杨春雷, 粟海涛, 等. 软弱破碎围岩隧道锚喷钢架联合支护的复合拱理论及应用研究[J]. 土木工程学报, 2015, 48(5): 115–122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201505017.htm WEN Jing-zhou, YANG Chun-lei, SU Hai-tao, et al. Theoretical analysis and application of composite arch for bolt-shotcrete steel frame supported tunnel in weak and fractured rock mass[J]. China Civil Engineering Journal, 2015, 48(5): 115–122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201505017.htm
[15] ANAGNOSTOU G. The contribution of horizontal arching to tunnel face stability[J]. Geotechnik, 2012, 35(1): 34–44. doi: 10.1002/gete.201100024
[16] ANAGNOSTOU G, SERAFEIMIDIS K. The dimensioning of tunnel face reinforcement[C]//Proceedings of ITA World Tunnel Congress 2007"Underground space – The 4th Dimension of Metropolises". 2007. Prague.
[17] ANAGNOSTOU G, PERAZZELLI P. Analysis method and design charts for bolt reinforcement of the tunnel face in cohesive-frictional soils[J]. Tunnelling and Underground Space Technology, 2015, 47: 162–181. doi: 10.1016/j.tust.2014.10.007
[18] WINDSOR C R. Rock reinforcement systems[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(6): 919–951. doi: 10.1016/S1365-1609(97)80004-4
[19] 吴学震, 蒋宇静, 王刚, 等. 大变形锚杆支护效应分析[J]. 岩土工程学报, 2016, 38(2): 245–252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602010.htm WU Xue-zhen, JIANG Yu-jing, WANG Gang, et al. Reinforcement effect of yielding bolts[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 245–252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602010.htm
[20] BOBET A, EINSTEIN H H. Tunnel reinforcement with rockbolts[J]. Tunnelling and Underground Space Technology, 2011, 26(1): 100–123.
[21] INDRARATNA B, KAISER P K. Analytical model for the design of grouted rock bolts[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(4): 227–251.
[22] 张益东. 锚固复合承载体承载特性研究及在巷道锚杆支护设计中的应用[D]. 徐州: 中国矿业大学, 2013. ZHANG Yi-dong. Study on Bearing Characteristic of Composite Bolt-Rock Bearing Structure and Its Application in Roadway Bolting Design[D]. Xuzhou: China University of Mining and Technology, 2013. (in Chinese)
[23] PARK K H, KIM Y J. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 616–622.
[24] HOEK E, BROWN E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186.
-
期刊类型引用(0)
其他类型引用(1)