Soil-water characteristics and permeability of compacted loess considering effects of dry density
-
摘要: 为了研究干密度对压实黄土土水特征、渗透特性的影响,用一维瞬时土柱渗透仪开展了不同干密度压实黄土的常水头渗透试验,得到了入渗量、体积含水率、吸力时程线与土水特征曲线;利用瞬态剖面法计算了非饱和渗透系数,分别得到其与吸力和饱和度的关系曲线。结果表明:干密度增大,入渗量时程线趋于平缓,吸力和体积含水率时程线转折点后移,陡变段斜率增大,其变化规律可用5个时间段进行描述;水自试样底部流出稳定后,不同干密度试样皆未完全饱和,其最大饱和度随干密度增大而增大;干密度增大,土水特征曲线上移,渗透性曲线规律性下移。基于试验结果,分别建立了直接考虑干密度影响的土水特征和渗透性函数的归一化模型。Abstract: In order to investigate the influences of dry density on the soil-water characteristics and permeability of compacted loess, a one-dimensional instantaneous soil column infiltration instrument is used to carry out the constant head infiltration tests on the compacted loess with different dry densities, and the time-history curves of infiltration volume, volumetric water content and suction and the soil-water characteristic curves at the monitoring section are obtained. The unsaturated permeability coefficient is calculated by the transient profile method, and the relationship curves among permeability coefficient, suction and saturation are drawn respectively. The research results show that as the dry density increases, the time-history curves of infiltration tend to be flat, the turning point curves of the time-history of suction and volumetric water content move back, and the slope of the steep change section increases. Five time periods can be used to describe the change law. After the water flow from the bottom of the soil column is stable, the samples are not fully saturated, and the saturation increases with the dry density. As the dry density increases, the soil-water characteristic curve moves upward as a whole, and the function curves of permeability coefficient move downward as a whole. Based on the test results, the normalized models for the soil-water characteristic and permeability curves that directly consider the influences of dry density are established respectively.
-
Keywords:
- dry density /
- compacted loess /
- infiltration test /
- soil-water characteristic /
- permeability
-
-
表 1 土样的基本物理性质指标
Table 1 Basic physical properties of soil samples
Gs 天然含水率w/% 天然干密度ρd/(g·cm-3) 液限wL/% 塑限wp/% 塑性指数IP 不均匀系数Cu 曲率系数Cc 颗粒组成/% > 0.075 mm 0.075~0.005 mm ≤0.005 mm 2.70 6.2~8.2 1.3~1.4 24.9 16.5 8.4 2.58 1.27 28 58 14 表 2 含水率8%时黄土的物理性质及吸力对比
Table 2 Comparison of physical properties and suctions of loess with water content of 8%
文献 取样地 wL/% wP/% IP 颗粒组成/% ρd/(g·cm-3) 含水率8%对应的吸力值/kPa > 0.075 mm 0.075~0.005 mm ≤0.005 mm 本文 兰州 24.9 16.5 8.4 28.00 58.00 14.0 1.35 90 Hou Xiao-kun等[25] 兰州 27.5 18.3 9.2 16.00 68.00 16.0 1.35 80 邵显显[26] 兰州 27.5 18.0 9.5 8.00 75.00 17.0 1.37 70 蔡国庆等[27] 山西阳城 24.0 12.8 11.2 16.79 64.01 19.2 1.40 70 孙永斌等[28] 河南灵宝 23.8 16.5 7.3 — — — 1.36 80 张登飞等[10] 西安 30.9 19.8 11.1 4.00 73.00 23.0 1.28 大于200 姚志华等[17] 兰州 28.7 17.6 11.1 — — — 1.28 180 江耀[29] 兰州 27.8 17.7 10.1 0.45 84.55 15.0 1.43 160 -
[1] 王文焰, 汪志荣, 王全九, 等. 黄土中Green-Ampt入渗模型的改进与验证[J]. 水利学报, 2003, 34(5): 30–34. doi: 10.3321/j.issn:0559-9350.2003.05.005 WANG Wen-yan, WANG Zhi-rong, WANG Quan-jiu, et al. Improvement and evaluation of the Green-Ampt model in loess soil[J]. Journal of Hydraulic Engineering, 2003, 34(5): 30–34. (in Chinese) doi: 10.3321/j.issn:0559-9350.2003.05.005
[2] 朱青青, 苗强强, 陈正汉, 等. 考虑基质势影响的非饱和土水分运移规律测试系统研制[J]. 岩土工程学报, 2016, 38(增刊2): 240–244. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16687.shtml ZHU Qing-qing, MIAO Qiang-qiang, CHEN Zheng-han, et al. Development of test system for unsaturated soil water movement law considering influence of matrix potential[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 240–244. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16687.shtml
[3] 高游, 孙德安. 单峰和双峰土水特征曲线基本参数的确定[J]. 岩土工程学报, 2017, 39(10): 1884–1891. doi: 10.11779/CJGE201710017 GAO You, SUN De-an. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1884–1891. (in Chinese) doi: 10.11779/CJGE201710017
[4] 陈存礼, 褚峰, 李雷雷, 等. 侧限压缩条件下非饱和原状黄土的土水特征[J]. 岩石力学与工程学报, 2011, 30(3): 610–615. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103022.htm CHEN Cun-li, CHU Feng, LI Lei-lei, et al. Soil-water characteristics of unsaturated undisturbed loess under confined compression condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 610–615. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103022.htm
[5] LEUNG A K, COO J L, NG C W W, et al. New transient method for determining soil hydraulic conductivity function[J]. Canadian Geotechnical Journal, 2016, 53(8): 1332–1345. doi: 10.1139/cgj-2016-0113
[6] 王红, 李同录, 付昱凯. 利用瞬态剖面法测定非饱和黄土的渗透性曲线[J]. 水利学报, 2014, 45(8): 997–1003. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201408015.htm WANG Hong, LI Tong-lu, FU Yu-kai. Determining permeability function of unsaturated loess by using instantaneous profile method[J]. Journal of Hydraulic Engineering, 2014, 45(8): 997–1003. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201408015.htm
[7] 张林, 张登飞, 陈存礼, 等. 考虑竖向附加应力作用的一维垂直土柱仪研制与应用[J]. 水文地质工程地质, 2020, 47(2): 112–119. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002015.htm ZHANG Lin, ZHANG Deng-fei, CHEN Cun-li, et al. Research and application of stress-controllable soil column instrument[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 112–119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202002015.htm
[8] 张林, 张登飞, 陈存礼, 等. 竖向压力作用下重塑黄土土柱压缩湿陷及渗水试验研究[J]. 水利学报, 2019, 50(10): 1214–1221. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201910006.htm ZHANG Lin, ZHANG Deng-fei, CHEN Cun-li, et al. Experimental study on compression collapsibility and infiltration of remolded loess soil column under vertical pressure[J]. Journal of Hydraulic Engineering, 2019, 50(10): 1214–1221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201910006.htm
[9] 张登飞, 陈存礼, 陈惠, 等. 三轴应力条件下原状黄土的吸湿渗水特性[J]. 岩土工程学报, 2018, 40(增刊1): 45–50. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17431.shtml ZHANG Deng-fei, CHEN Cun-li, CHEN Hui, et al. Wetting permeability of intact loess under triaxial stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 45–50. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17431.shtml
[10] 张登飞, 陈存礼, 张洁, 等. 等向应力条件下非饱和原状黄土增湿渗水特性试验研究[J]. 岩土工程学报, 2018, 40(3): 431–440. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17301.shtml ZHANG Deng-fei, CHEN Cun-li, ZHANG Jie, et al. Experimental study on wetting water permeability of unsaturated intact loess under isotropic stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 431–440. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17301.shtml
[11] FREDLUND D G, XING A Q, HUANG S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 533–546. doi: 10.1139/t94-062
[12] 李萍, 李同录, 王红, 等. 非饱和黄土土-水特征曲线与渗透系数Childs & Collis-Geroge模型预测[J]. 岩土力学, 2013, 34(增刊2): 184–189. LI Ping, LI Tong-lu, WANG Hong, et al. Soil-water characteristic curve and permeability perdiction on Childs & Collis-Geroge model of unsaturated loess[J]. Rock and Soil Mechanics, 2013, 34(S2): 184–189. (in Chinese)
[13] NG C W W, LEUNG A K. Measurements of drying and wetting permeability functions using a new stress- controllable soil column[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 58–68. doi: 10.1061/(ASCE)GT.1943-5606.0000560
[14] LI X, ZHANG L M, FREDLUND D G. Wetting front advancing column test for measuring unsaturated hydraulic conductivity[J]. Canadian Geotechnical Journal, 2009, 46(12): 1431–1445. doi: 10.1139/T09-072
[15] 胡海军, 李常花, 崔玉军, 等. 增湿情况重塑黄土非饱和渗透系数的测定方法研究[J]. 水利学报, 2018, 49(10): 1216–1226. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201810005.htm HU Hai-jun, LI Chang-hua, CUI Yu-jun, et al. Research on the determination of permeability coefficient of unsaturated remolded loess under wetting condition[J]. Journal of Hydraulic Engineering, 2018, 49(10): 1216–1226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201810005.htm
[16] 陈正汉, 谢定义, 王永胜. 非饱和土的水气运动规律及其工程性质研究[J]. 岩土工程学报, 1993, 15(3): 9–20. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract9669.shtml CHEN Zheng-han, XIE Ding-yi, WANG Yong-sheng. Experimental studies of laws of fluid motion, suction and pore pressures in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 9–20. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract9669.shtml
[17] 姚志华, 陈正汉, 黄雪峰, 等. 非饱和原状和重塑Q3黄土渗水特性研究[J]. 岩土工程学报, 2012, 34(6): 1020–1027. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14601.shtml YAO Zhi-hua, CHEN Zheng-han, HUANG Xue-feng, et al. Hydraulic conductivity of unsaturated undisturbed and remolded Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1020–1027. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14601.shtml
[18] 王铁行, 卢靖, 张建锋. 考虑干密度影响的人工压实非饱和黄土渗透系数的试验研究[J]. 岩石力学与工程学报, 2006, 25(11): 2364–2368. doi: 10.3321/j.issn:1000-6915.2006.11.030 WANG Tie-hang, LU Jing, ZHANG Jian-feng. Experimental study on permeability coefficient of artificially compacted unsaturated loess considering influence of density[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2364–2368. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.11.030
[19] 张龙, 陈正汉, 扈胜霞, 等. 延安某工地填土的渗水和持水特性研究[J]. 岩土工程学报, 2018, 40(增刊1): 183–188. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17453.shtml ZHANG Long, CHEN Zheng-han, HU Sheng-xia, et al. Seepage and water retention characteristics of fill in a construction site in Yan'an[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 183–188. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17453.shtml
[20] 赵彦旭, 张虎元, 吕擎峰, 等. 压实黄土非饱和渗透系数试验研究[J]. 岩土力学, 2010, 31(6): 1809–1812. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201006022.htm ZHAO Yan-xu, ZHANG Hu-yuan, LÜ Qing-feng, et al. Experimental study of unsaturated permeability coefficient of compacted loess[J]. Rock and Soil Mechanics, 2010, 31(6): 1809–1812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201006022.htm
[21] 马亚维, 谌文武, 毕骏, 等. 干密度对黄土渗透系数的影响[J]. 岩土工程学报, 2018, 40(增刊1): 165–170. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17450.shtml MA Ya-wei, CHEN Wen-wu, BI Jun, et al. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165–170. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17450.shtml
[22] 土的工程分类标准: GB/T 50145—2007[S]. 2008. Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. 2008. (in Chinese)
[23] 陈锐, 陈中奎, 张敏, 等. 新型高量程张力计在吸力量测中的应用[J]. 水利学报, 2013, 44(6): 743–747, 755. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201306019.htm CHEN Rui, CHEN Zhong-kui, ZHANG Min, et al. Applications of a high-capacity tensiometer for direct measurement of suction[J]. Journal of Hydraulic Engineering, 2013, 44(6): 743–747, 755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201306019.htm
[24] CHEN R, LIU J, LI J H, et al. An integrated high-capacity tensiometer for measuring water retention curves continuously[J]. Soil Science Society of America Journal, 2015, 79(3): 943–947.
[25] HOU X K, QI S W, LI T L, et al. Microstructure and soil-water retention behavior of compacted and intact silt loess[J]. Engineering Geology, 2020, 277: 105814.
[26] 邵显显. 黄土非饱和增湿变形特性研究[D]. 兰州: 兰州大学, 2018. SHAO Xian-xian. Wetting-Induced Deformation Behavior of Loess Soil[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)
[27] 蔡国庆, 韩博文, 杨雨, 等. 砂质黄土土–水特征曲线的试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 11–15. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18440.shtml CAI Guo-qing, HAN Bo-wen, YANG Yu, et al. Experimental study on soil-water characteristic curves of sandy loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 11–15. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18440.shtml
[28] 孙永斌, 武小鹏, 于雪飞. 原状黄土土–水特征曲线研究[J]. 兰州工业学院学报, 2015, 22(6): 31–35. https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD201506007.htm SUN Yong-Bin, WU Xiao-peng, YU Xue-fei, et al. Study on soil-water characteristic curve of undisturbed loess[J]. Journal of Lanzhou Institute of Technology, 2015, 22(6): 31–35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD201506007.htm
[29] 江耀. 非饱和黄土特征曲线的研究[D]. 兰州: 兰州大学, 2012. JIANG Yao. Study of the Characteristic Curves for Unsaturated Loess[D]. Lanzhou: Lanzhou University, 2012. (in Chinese)
[30] 朱慕仁. 中国黄土地基工程分类体系及其定名商讨[C]// 中国黄土分类定名及其应用研讨会, 1989, 西安. ZHU Mu-ren. China loess foundation engineering classification system and name to discuss[C]// China Loess Classification Name and Application Workshop, 1989, Xi'an. (in Chinese)
[31] 赵天宇, 王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J]. 中南大学学报(自然科学版), 2012, 43(6): 2445–2453. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206062.htm ZHAO Tian-yu, WANG Jin-fang. Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University (Science and Technology), 2012, 43(6): 2445–2453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206062.htm
[32] 马田田, 韦昌富, 陈盼, 等. 考虑残余含气量的非饱和土的水力耦合本构模型[J]. 岩土力学, 2014, 35(12): 3415–3420. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412010.htm MA Tian-tian, WEI Chang-fu, CHEN Pan, et al. Hydro-mechanical coupling constitutive model of unsaturated soils considering effect of air entrapment[J]. Rock and Soil Mechanics, 2014, 35(12): 3415–3420. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412010.htm
[33] GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science, 1958, 85(4): 228–232.
-
期刊类型引用(5)
1. 田晓丹,姜晓桢,殷友超,石泽译. 基于土工膜透声特性的膜下垫层渗透变形声波特征试验研究. 水利水电科技进展. 2025(02): 31-37 . 百度学术
2. 张宪雷,马仲阳,刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理. 岩土工程学报. 2024(11): 2333-2340 . 本站查看
3. 张宪雷,马仲阳,吴云云. 面膜堆石坝不同品种土工膜力学特性. 岩土工程学报. 2023(05): 940-952 . 本站查看
4. 徐国雷,张宪雷,马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理. 水电能源科学. 2022(12): 138-142 . 百度学术
5. 黄耀英,谢同,费大伟,包腾飞,颜剑. 基于测压管实测水位的王甫洲水利工程复合土工膜工作性态反馈. 岩土工程学报. 2021(03): 564-571 . 本站查看
其他类型引用(2)