Three-dimensional loosely coupled effective stress method for seismic soil-structure interactions
-
摘要: 地震波传播至土–结构接触界面时会发生反射与透射现象,结构周围土体处于往复剪应力和正应力差耦合的三维循环剪切状态。采用三维等效剪应变算法和加卸载判据将一维Davidenkov非线性滞回模型与剪切–体积应变耦合的孔压增量模型拓展至三维应力空间。考虑循环加载过程中土骨架循环刚度退化与超静孔隙水压力增长的耦合关系,建立了三维应力空间中的弱耦合有效应力分析法。基于ABAQUS显式求解器,实现了该有效应力算法,可应用于大型三维可液化场地中的土–地下结构体系非线性地震反应分析。针对已完成可液化场地三层三跨地铁车站结构试验开展数值模拟,结果表明:超静孔隙水压力的累积导致土的性状变化显著影响土–地下结构动力相互作用,数值模拟得到的土–结构接触界面能量聚焦时刻以及该时刻对应的瞬时卓越频率与振动台试验结果均吻合较好,提出的三维弱耦合有效应力法能较为理想地反映振动台试验中土–地下结构动力相互作用特性。土骨架有效应力水平显著影响超孔压比的发展规律,振动台不完备的密度相似比设计会造成模型结构周围地基土与原型的超孔压比分布规律存在差异。
-
关键词:
- 可液化场地 /
- 土–结构动力相互作用 /
- 弱耦合有效应力分析法 /
- 振动台试验
Abstract: Wave reflection and transmission phenomena occur when seismic ground motion propagates to the soil-structure interface, and the surrounding soil is under three-dimensional (3D) cyclic shearing with reciprocating change of shear stress and normal stress difference. The 3D equivalent shear strain algorithm and the loading-unloading criterion are used to extend the 1D Davidenkov hysteretic model in association with an incremental excess pore water pressure (EPWP) model to the 3D stress state. A weakly coupled effective stress method in 3D stress state is established considering the coupling between the cyclic degradation of soil stiffness and the EPWP generation during cyclic loading. Based on the ABAQUS explicit solver, the proposed method is implemented, allowing to perform nonlinear seismic response analysis of soil-structure interactions in 3D liquefiable site. The numerical simulation is carried out against a shaking table test on the subway station in liquefiable site. The results show that the EPWP generation leads to the degradation of soil stiffness, which significantly affects the dynamic soil-structure interactions. The energy-focusing time at the soil-structure interface obtained by numerical simulation and the corresponding instantaneous predominant frequency are in good agreement with the test results. The proposed effective stress method can capture the dynamic soil-structure interaction characteristics in the shaking table tests. However, the effective stress level at soil skeleton significantly affects the EPWP generation. The incomplete density similarity ratio design of the shaking table tests can cause the distribution of the EPWP ratio in the model soil deviated with the prototype. -
-
表 1 黏土与南京细砂的模型参数
Table 1 Model parameters of clay and Nanjing fine sand
土层 密度/(g·cm-3) 动泊松比 Davidenkov模型 孔压增量模型 A B a1 a2 a3 C1 C2 C3 γtv/% m n 黏土 1.75 0.49 1.2 0.35 2.5×10-4 0 0 — — — — — — 南京细砂 1.83 0.49 1.02 0.43 4.1×10-4 0.5 0.45 1.051 0.143 1.25 0.02 0.345 6.689 表 2 微粒混凝土CDP模型的参数
Table 2 Model parameters of micro-concrete
弹性模量Eo /GPa 拉伸变量ωt 压缩变量ωc 泊松比 ψ/(°) ε fbo/fc Kc u 7.5 0 1 0.18 36.31 0.1 1.16 2/3 0.005 表 3 振动台试验加载工况
Table 3 Schemes of shaking table tests
地震动 峰值加速度/g 工况 持时/s 松潘波 0.1 SP-1 100 0.5 SP-2 100 什邡八角波 0.1 SF-1 100 0.5 SF-2 100 -
[1] ZHUANG H Y, HU Z H, WANG X J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645–3668. doi: 10.1007/s10518-015-9790-6
[2] ELGAMAL A, YANG Z H, PARRA E, et al. Modeling of cyclic mobility in saturated cohesionless soils[J]. International Journal of Plasticity, 2003, 19(6): 883–905.
[3] YANG Z H, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119–1127. doi: 10.1061/(ASCE)1090-0241(2003)129:12(1119)
[4] KHOSHNOUDIAN F, SHAHROUR I. Numerical analysis of the seismic behavior of tunnels constructed in liquefiable soils[J]. Soils and Foundations, 2002, 42(6): 1–8. doi: 10.3208/sandf.42.6_1
[5] BAO X H, XIA Z F, YE G L, et al. Numerical analysis on the seismic behavior of a large metro subway tunnel in liquefiable ground[J]. Tunnelling and Underground Space Technology, 2017, 66: 91–106. doi: 10.1016/j.tust.2017.04.005
[6] 王刚, 张建民, 魏星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623–1627. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14212.shtml WANG Gang, ZHANG Jian-min, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623–1627. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14212.shtml
[7] 王睿, 张建民. 可液化地基中单桩基础的三维数值分析方法及应用[J]. 岩土工程学报, 2015, 37(11): 1979–1985. doi: 10.11779/CJGE201511006 WANG Rui, ZHANG Jian-min. Three-dimensional elastic-plastic analysis method for piles in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1979–1985. (in Chinese) doi: 10.11779/CJGE201511006
[8] TROPEANO G, CHIARADONNA A, D'ONOFRIO A, et al. A numerical model for non-linear coupled analysis of the seismic response of liquefiable soils[J]. Computers and Geotechnics, 2019, 105: 211–227. doi: 10.1016/j.compgeo.2018.09.008
[9] OLSON S M, MEI X, HASHASH Y M A. Nonlinear site response analysis with pore-water pressure generation for liquefaction triggering evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(2): 04019128. doi: 10.1061/(ASCE)GT.1943-5606.0002191
[10] FINN L. Practical studies of the seismic response of a rockfill dam[J]. Buddhist Christian Studies, 1993, 24: 89–100.
[11] FINN W, YOGENDRAKUMAR M, YOSHIDA N. Comparative assessment of methods for dynamic effective stress analysis[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1989, 8: 330–339.
[12] CHEN G X, WANG Y Z, ZHAO D F, et al. A new effective stress method for nonlinear site response analyses[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595–1611.
[13] 王彦臻, 赵丁凤, 陈国兴, 等. 一维场地地震反应非线性有效应力分析法及其验证[J]. 岩土工程学报, 2021, 43(3): 502–510. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18573.shtml WANG Yan-zhen, ZHAO Ding-feng, CHEN Guo-xing, et al. A new nonlinear effective stress method for one-dimensional seismic site response analysis and its validation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 502–510. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18573.shtml
[14] CHEN G X, CHEN S, ZUO X, et al. Shaking-table tests and numerical simulations on a subway structure in soft soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 13-28.
[15] CHEN G X, CHEN S, QI C Z, et al. Shaking table tests on a three-arch type subway station structure in a liquefiable soil[J]. Bulletin of Earthquake Engineering, 2015, 13(6): 1675–1701.
[16] 王国波, 郝朋飞, 孙富学. 地铁车站结构端部效应影响范围研究[J]. 岩土工程学报, 2020, 42(8): 1435–1445. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18271.shtml WANG Guo-bo, HAO Peng-fei, SUN Fu-xue. Spatial influence scope of end wall of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1435–1445. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18271.shtml
[17] 陈国兴, 左熹, 王志华, 等. 可液化场地地铁车站结构地震破坏特性振动台试验研究[J]. 建筑结构学报, 2012, 33(1): 128–137. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201201017.htm CHEN Guo-xing, ZUO Xi, WANG Zhi-hua, et al. Shaking table test on seismic failure characteristics of subway station structure at liquefiable ground[J]. Journal of Building Structures, 2012, 33(1): 128–137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201201017.htm
[18] CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022.
[19] DSSC. Abaqus/Standard User's Manual, ABAQUS 6.10 Documentation [CP/DK]. Providence, Rhode Island, 2010.
[20] 陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89–97. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11904.shtml CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89–97. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11904.shtml
[21] 王军, 蔡袁强, 李校兵. 循环荷载作用下超固结软黏土软化-孔压模型研究[J]. 岩土力学, 2008, 29(12): 3217–3222. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200812012.htm WANG Jun, CAI Yuan-qiang, LI Xiao-bing. Cyclic softening-pore pressure generation model for overconsolidated clay under cyclic loading[J]. Rock and Soil Mechanics, 2008, 29(12): 3217–3222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200812012.htm
[22] 邱贤阳, 史秀志, 周健, 等. 基于HHT能量谱的高精度雷管短微差爆破降振效果分析[J]. 爆炸与冲击, 2017, 37(1): 107–113. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201701015.htm QIU Xian-yang, SHI Xiu-zhi, ZHOU Jian, et al. On vibration reduction effect of short millisecond blasting by high-precision detonator based on HHT energy spectrum[J]. Explosion and Shock Waves, 2017, 37(1): 107–113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201701015.htm
-
期刊类型引用(11)
1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 . 百度学术
2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 . 百度学术
3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 . 百度学术
4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 . 必应学术
5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 . 百度学术
6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 . 百度学术
7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 . 百度学术
8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 . 百度学术
9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 . 必应学术
10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 . 百度学术
11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 . 百度学术
其他类型引用(8)