Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高级切线模量法及其在地基沉降计算中的应用

杨光华, 李卓勋, 王东英, 李志云, 姜燕

杨光华, 李卓勋, 王东英, 李志云, 姜燕. 高级切线模量法及其在地基沉降计算中的应用[J]. 岩土工程学报, 2022, 44(5): 787-798. DOI: 10.11779/CJGE202205001
引用本文: 杨光华, 李卓勋, 王东英, 李志云, 姜燕. 高级切线模量法及其在地基沉降计算中的应用[J]. 岩土工程学报, 2022, 44(5): 787-798. DOI: 10.11779/CJGE202205001
YANG Guang-hua, LI Zhuo-xun, WANG Dong-ying, LI Zhi-yun, JIANG Yan. Advanced tangent modulus method and its application to calculation of foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 787-798. DOI: 10.11779/CJGE202205001
Citation: YANG Guang-hua, LI Zhuo-xun, WANG Dong-ying, LI Zhi-yun, JIANG Yan. Advanced tangent modulus method and its application to calculation of foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 787-798. DOI: 10.11779/CJGE202205001

高级切线模量法及其在地基沉降计算中的应用  English Version

基金项目: 

国家自然科学基金项目 52078143

详细信息
    作者简介:

    杨光华(1962—),男,广东罗定人,博士,教授级高级工程师,博士生导师,主要从事本构理论、基础工程、软土工程及基坑工程等方面的研究、设计及咨询工作。E-mail: 1084242143@qq.com

  • 中图分类号: TU433

Advanced tangent modulus method and its application to calculation of foundation settlement

  • 摘要: 切线模量法方法简单、参数少,易于工程应用,研究表明在计算常规尺寸的基础时具有较好的精度,而对于筏板这样的大尺寸基础时,当计算深度较深时,存在计算沉降偏大的问题。为此提出了考虑初始切线模量沿深度增大的高级切线模量法,通过与实际工程案例和小应变有限元数值计算方法结果比较,高级切线模量法能更符合实际,进一步发展完善了切线模量法。
    Abstract: The tangent modulus method proposed by YANG Guang-hua is simple, with few parameters and easy for engineering application. The researches have shown that it has better accuracy when calculating the foundations with conventional dimensions, but for the large-sized foundations such as rafts, the calculated settlement is too large. For this reason, an advanced tangent modulus method considering the increase of the initial tangent modulus extension depth is proposed. The comparison with the actual engineering case and the calculated results by the finite element method of the small-strain hardening soil model shows that the advanced tangent modulus method can be more realistic. This further develops and improves the tangent modulus method.
  • 图  1   各模型计算所得ps曲线

    Figure  1.   ps curves calculated by various models

    图  2   ss/p拟合曲线

    Figure  2.   Fitting curves of s and s/p

    图  3   各方法ps曲线对比图(1 m×1 m)

    Figure  3.   Comparison of ps curves by various methods (1 m×1 m)

    图  4   各方法HS曲线对比图(1 m×1 m)

    Figure  4.   Comparison of HS curves by various methods (1 m×1 m)

    图  5   各方法ps曲线对比图(3 m×3 m)

    Figure  5.   Comparison of ps curves by various methods (3 m×3 m)

    图  6   各方法ps曲线对比图(6 m×6 m)

    Figure  6.   Comparison of ps curves by various methods (6 m×6 m)

    图  7   各方法ps曲线对比图(10 m×10 m)

    Figure  7.   Comparison of ps curves by various methods (10 m×10 m)

    图  8   各方法ps曲线对比图(20 m×20 m)

    Figure  8.   Comparison of ps curves by various methods (20 m×20 m)

    图  9   各方法HS曲线对比图(3 m×3 m)

    Figure  9.   Comparison of HS curves by various methods (3 m×3 m)

    图  10   各方法HS曲线对比图(6 m×6 m)

    Figure  10.   Comparison of HS curves by various methods (6 m×6 m)

    图  11   各方法HS曲线对比图(10 m×10 m)

    Figure  11.   Comparison of HS curves by various methods (10 m×10 m)

    图  12   各方法HS曲线对比图(20 m×20 m)

    Figure  12.   Comparison of HS curves by various methods (20 m×20 m)

    图  13   压板在不同埋深处的荷载–沉降曲线

    Figure  13.   Load-settlement curves of plate at different buried depths

    图  14   不同埋深处的Et0

    Figure  14.   Et0 at different buried depths

    图  15   Et0H拟合图

    Figure  15.   Fitting of Et0 and H

    图  16   Et0H拟合图(10 m×10 m)

    Figure  16.   Fitting of Et0 and H (10 m×10 m)

    图  17   Et0H拟合图(20 m×20 m)

    Figure  17.   Fitting of Et0 and H (20 m×20 m)

    图  18   ps曲线对比(1 m×1 m)

    Figure  18.   Comparison of ps curves (1 m×1 m)

    图  19   HS曲线对比(1 m×1 m)

    Figure  19.   Comparison of HS curves (1 m×1 m)

    图  20   EtH曲线对比(1 m×1 m)

    Figure  20.   Comparison of EtH curves (1 m×1 m)

    图  21   ps曲线对比(3 m×3 m)

    Figure  21.   Comparison of ps curves (3 m×3 m)

    图  22   ps曲线对比图(6 m×6 m)

    Figure  22.   Comparison of ps curves (6 m×6 m)

    图  23   ps曲线对比(10 m×10 m)

    Figure  23.   Comparison of ps curves (10 m×10 m)

    图  24   ps曲线对比图(20 m×20 m)

    Figure  24.   Comparison of ps curves (20 m×20 m)

    图  25   HS曲线对比图(3 m×3 m)

    Figure  25.   HS curve comparison (3 m×3 m)

    图  26   HS曲线对比图(6 m×6 m)

    Figure  26.   Comparison of HS curves (6 m×6 m)

    图  27   HS曲线对比图(10 m×10 m)

    Figure  27.   Comparison of HS curves (10 m×10 m)

    图  28   HS曲线对比图(20 m×20 m)

    Figure  28.   Comparison of HS curves (20 m×20 m)

    图  29   EtH曲线对比图(3 m×3 m)

    Figure  29.   Comparison of EtH curves (3 m×3 m)

    图  30   EtH曲线对比图(6 m×6 m)

    Figure  30.   Comparison of EtH curves (6 m×6 m)

    图  31   EtH曲线对比图(10 m×10 m)

    Figure  31.   Comparison of EtH curves (10 m×10 m)

    图  32   EtH曲线对比图(20 m×20 m)

    Figure  32.   Comparison of EtH curves (20 m×20 m)

    图  33   实测ps曲线

    Figure  33.   Measured ps curves

    图  34   不同充水荷载下HS曲线

    Figure  34.   HS curves under different water-filling loads

    图  35   有限元模型图

    Figure  35.   Finite element model diagram

    图  36   不同方法ps曲线对比

    Figure  36.   Comparison of ps curves of different methods

    图  37   不同方法H–S曲线对比图

    Figure  37.   Comparison of HS curves by various methods

    图  38   EtH曲线对比图

    Figure  38.   Comparison of EtH curves by various methods

    图  39   地层分布图

    Figure  39.   Distribution of soil strata

    图  40   实测HS曲线

    Figure  40.   Measured HS curves

    图  41   有限元模型图

    Figure  41.   Diagram of finite element model

    图  42   不同方法HS曲线对比图

    Figure  42.   Comparison of HS curves by various methods

    图  43   EtH曲线对比图

    Figure  43.   Comparison of EtH curves by various methods

    表  1   有限元小应变硬化土模型参数取值

    Table  1   Mechanical parameter of soil for small strain hardened model

    土层 γ/(kN·m-3) νur c/kPa φ/(°) Knc0 pref/kPa m Gref0/MPa Erefoed/MPa Eref50/MPa Erefur/MPa γ0.7
    伦敦黏土 18.44 0.2 2 24 0.59 100 0.5 40 6.73 8 16 9.68×10-4
    下载: 导出CSV

    表  2   莫尔-库仑模型参数取值

    Table  2   Mechanical parameters for Mohr Coulomb model

    土层 γ/(kN·m-3) ν c/kPa φ/(°) E/MPa
    伦敦黏土 18.44 0.3 2 24 7.3
    下载: 导出CSV

    表  3   线弹性模型参数取值

    Table  3   Mechanical parameters for linear elastic model

    土层 γ/(kN·m-3) ν E/MPa
    伦敦黏土 18.44 0.3 7.3
    下载: 导出CSV

    表  4   1 m×1 m压板Et0随深度变化情况

    Table  4   Variation of Et0 of 1 m×1 m plate with buried depth

    H/m K0 Et0/MPa a b
    0 18.25 14.61 0.0548 0.0056
    1.0 28.82 23.08 0.0347 0.0022
    1.5 32.15 25.75 0.0311 0.0020
    2.0 39.84 31.90 0.0251 0.0018
    2.5 46.73 37.42 0.0214 0.0014
    3.0 48.08 38.50 0.0208 0.0013
    4.0 54.95 44.00 0.0182 0.0013
    5.0 61.73 49.43 0.0162 0.0009
    6.0 64.52 51.66 0.0155 0.0008
    7.0 69.93 56.00 0.0143 0.0007
    下载: 导出CSV

    表  5   土的基本力学参数

    Table  5   Mechanical parameters of soil

    土体名称 γ/(kN·m-3) c/kPa φ/(°) e Es1-2/MPa E0/MPa
    粉质黏土 18.5 18.3 19.5 1.15 7.5 14
    淤泥质黏土 17.6 7.5 5.8 1.20 3 4.1
    砂质粉土 18.3 10 20 1 7.4 14
    下载: 导出CSV

    表  6   莫尔-库仑模型参数取值

    Table  6   Mechanical parameters for Mohr Coulomb model

    土层 γ/(kN·m-3) ν c/kPa φ/(°) E/MPa
    粉质黏土 18.5 0.3 18.3 19.5 14
    淤泥质黏土 17.6 0.3 7.5 5.8 4.1
    砂质粉土 18.3 0.3 10 20 14
    下载: 导出CSV

    表  7   线弹性模型参数取值

    Table  7   Mechanical parameters for linear elastic model

    土层 γ/(kN·m-3) ν E/MPa
    粉质黏土 18.5 0.3 14
    淤泥质黏土 17.6 0.3 4.1
    砂质粉土 18.3 0.3 14
    下载: 导出CSV

    表  8   小应变硬化土模型参数取值

    Table  8   Mechanical parameters of soil for small-strain hardening model

    土层 γ/(kN·m-3) νur c/kPa ϕ/(°) Knc0 pref/kPa m Gref0/MPa Erefoed/MPa Eref50/MPa Erefur/MPa γ0.7
    粉质黏土 18.50 0.2 18.3 19.5 0.6662 100 0.8 63.0 14 14.0 42.0 2×10-4
    淤泥质黏土 17.60 0.2 7.5 5.8 0.8989 100 0.8 18.1 4.1 4.1 12.3 2×10-4
    砂质粉土 18.30 0.2 10.0 20.0 0.6580 100 0.5 63.0 14 14.0 42.0 2×10-4
    下载: 导出CSV

    表  9   土的基本力学参数

    Table  9   Mechanical parameters of soil

    土体名称 γ/(kN·m-3) c/kPa φ/(°) E0/MPa
    细砂 18.5 0 37 44.4
    粉砂① 18.5 0 38 48.7
    粉质黏土 18.5 25 22 27.0
    粉砂② 18.5 0 39 67.3
    白垩纪砂岩 18.5 150 38 250.0
    下载: 导出CSV

    表  10   莫尔-库仑模型参数取值

    Table  10   Parameters for Mohr Coulomb model

    土层 γ/(kN·m-3) ν c/kPa φ/(°) E/MPa
    细砂 18.5 0.3 0 37 44.4
    粉砂① 18.5 0.3 0 38 48.7
    粉质黏土 18.5 0.3 25 22 27.0
    粉砂② 18.5 0.3 0 39 67.3
    白垩纪砂岩 18.5 0.3 150 38 250.0
    下载: 导出CSV

    表  11   线弹性模型参数取值

    Table  11   Parameters for linear elastic model

    土层 γ/(kN·m-3) ν E/MPa
    细砂 18.5 0.3 44.4
    粉砂① 18.5 0.3 48.7
    粉质黏土 18.5 0.3 27.0
    粉砂② 18.5 0.3 67.3
    白垩纪砂岩 18.5 0.3 250.0
    下载: 导出CSV

    表  12   小应变硬化土模型参数取值

    Table  12   Parameters of soil for small-strain hardening model

    土层 γ/(kN·m-3) νur c/kPa φ/(°) Knc0 pref/kPa m Gref0/MPa Erefoed/MPa Eref50/MPa Erefur/MPa γ0.7
    细砂 18.5 0.2 0 37 0.398 100 0.5 199.8 44.4 44.4 133.2 2×10-4
    粉砂① 18.5 0.2 0 38 0.384 100 0.5 438.3 48.7 48.7 146.1 2×10-4
    粉质黏土 18.5 0.2 25 22 0.625 100 0.8 121.5 27.7 27.7 81.0 2×10-4
    粉砂② 18.5 0.2 0 39 0.371 100 0.5 302.8 67.3 67.3 201.9 2×10-4
    白垩纪砂岩 18.5 0.2 150 38 0.384 100 0.5 1125.0 250 250 750.0 2×10-4
    下载: 导出CSV
  • [1] 王海波, 徐明, 宋二祥. 基于硬化土模型的小应变本构模型研究[J]. 岩土力学, 2011, 32(1): 39–43, 136. doi: 10.3969/j.issn.1000-7598.2011.01.007

    WANG Hai-bo, XU Ming, SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. Rock and Soil Mechanics, 2011, 32(1): 39–43, 136. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.007

    [2] 建筑地基基础设计规范: GB 50007—2011[S]. 2012.

    Code for Design of Building Foundation: GB 50007—2011[S]. 2012. (in Chinese)

    [3] 杨光华. 地基非线性沉降计算的原状土切线模量法[J]. 岩土工程学报, 2006, 28(11): 1927–1931. doi: 10.3321/j.issn:1000-4548.2006.11.002

    YANG Guang-hua. Nonlinear settlement computation of the soil foundation with the undisturbed soil tangent modulus method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1927–1931. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.11.002

    [4] 杨光华, 王俊辉. 地基非线性沉降计算原状土切线模量法的推广和应用[J]. 岩土力学, 2011, 32(增刊1): 33–37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1007.htm

    YANG Guang-hua, WANG Jun-hui. Application of undisturbed soil tangent modulus method for computing nonlinear settlement of soil foundation[J]. Rock and Soil Mechanics, 2011, 32(S1): 33–37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1007.htm

    [5] 杨光华. 根据经验地基承载力反算土的强度和变形参数[J]. 广东水利水电, 2002(1): 3–6. https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD200201000.htm

    YANG Guang-hua. According to the experience of foundation bearing capacity to inverse the strength and deformation parameters of soil[J]. Guangdong Water Resources and Hydropower, 2002(1): 3–6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDSD200201000.htm

    [6] 杨光华. 深基坑支护结构的实用计算方法及其应用[M]. 北京: 地质出版社, 2004.

    YANG Guang-hua. Practical Calculation Method of Retaining Structures for Deep Excavations and Its Application[M]. Beijing: Geological Publishing House, 2004. (in Chinese)

    [7]

    DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629–1653. doi: 10.1061/JSFEAQ.0001458

    [8] 赵同顺, 周波. 大型油罐地基变形特性的研究[J]. 岩石力学与工程学报, 2004, 23(6): 1037–1043. doi: 10.3321/j.issn:1000-6915.2004.06.028

    ZHAO Tong-shun, ZHOU Bo. Deformation behaviors of soft foundation under large oil tank[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 1037–1043. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.06.028

    [9] 赵同顺. 5×104 m3大型油罐岩土工程实录[C]// 第五届全国岩土工程实录交流会岩土工程实录集, 2000, 南京.

    ZHAO Tong-shun. Geotechnical engineering record of 5×104m3 large oil tank[C]// The 5th National Geotechnical Engineering Record Exchange Conference, 2000, Nanjing. (in Chinese)

    [10] 舒武堂, 李国胜, 蒋涛. 武汉地区淤泥质软土、黏性土的压缩模量与变形模量的相关关系[J]. 岩土工程界, 2004, 7(7): 29–30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200407011.htm

    SHU Wu-tang, LI Guo-sheng, JIANG Tao. The correlativity between the compression model and elastic model for silt and clay in Wuhan[J]. Geotechnical Engineering World, 2004, 7(7): 29–30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200407011.htm

    [11]

    C M PLANT G W. The settlement performance of a raft supporting a 27-storey hotel on estuarine deposits in Durban[J]. Civil Engineering = Siviele Ingenieurswese, 1990, 32(6).

    [12] 建筑地基基础设计规范: DBJ15—31—2016[S]. 2016.

    Design Code for Building Foundation: DBJ15—31— 2016[S]. 2016. (in Chinese)

图(43)  /  表(12)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  20
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-04-30

目录

    /

    返回文章
    返回