• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

预氧化—稳定化—固化联合修复As(Ⅲ)污染土

张文杰, 余海生, 蒋墨翰

张文杰, 余海生, 蒋墨翰. 预氧化—稳定化—固化联合修复As(Ⅲ)污染土[J]. 岩土工程学报, 2023, 45(6): 1231-1239. DOI: 10.11779/CJGE20220279
引用本文: 张文杰, 余海生, 蒋墨翰. 预氧化—稳定化—固化联合修复As(Ⅲ)污染土[J]. 岩土工程学报, 2023, 45(6): 1231-1239. DOI: 10.11779/CJGE20220279
ZHANG Wenjie, YU Haisheng, JIANG Mohan. Combined remediation of As(Ⅲ)-contaminated soils by pre-oxidation, stabilization and solidification[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1231-1239. DOI: 10.11779/CJGE20220279
Citation: ZHANG Wenjie, YU Haisheng, JIANG Mohan. Combined remediation of As(Ⅲ)-contaminated soils by pre-oxidation, stabilization and solidification[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1231-1239. DOI: 10.11779/CJGE20220279

预氧化—稳定化—固化联合修复As(Ⅲ)污染土  English Version

基金项目: 

国家自然科学基金项目 41772300

详细信息
    作者简介:

    张文杰(1978—),男,博士,教授,主要从事环境岩土工程方面的研究工作。E-mail: zhwjlyl@163.com

  • 中图分类号: TU411

Combined remediation of As(Ⅲ)-contaminated soils by pre-oxidation, stabilization and solidification

  • 摘要: 固化/稳定化是重金属污染土治理的最常用方法,但因为As(Ⅲ)的迁移性强,固化处理As(Ⅲ)污染土的效果欠佳。提出了As(Ⅲ)污染土的预氧化—稳定化—固化联合修复方法,首先利用Fenton试剂将土中As(Ⅲ)氧化为迁移性弱的As(Ⅴ),再用FeCl3稳定As(Ⅴ),最后通过水泥固化进一步固定As(Ⅴ)。通过无侧限抗压强度试验、毒性浸出试验(TCLP)、合成沉降浸出试验(SPLP)、pH测试、连续萃取试验和光谱分析研究了联合修复的效果和机理。结果表明,Fenton预氧化能够有效提高修复效率,当Fe与As的摩尔比为1︰1、添加10%水泥时,TCLP和SPLP得到As的浸出毒性分别低至2.51,1.33 mg/L,修复效率分别高达97.46%,98.53%;FeCl3能促进水泥的水化并改善固化体的孔隙结构,提高固化体的强度;修复方法可将As转化为更稳定的形态,有效降低As的潜在环境风险;大多数As可以与铁的水合氧化物结合而被固定,但随着水泥用量增加pH增加,Fe-As的结合减弱,导致部分As释放;光谱分析结果表明,联合修复可以将土中92.5%的As(Ⅲ)转化为As(Ⅴ),并通过水化硅酸钙的固封和钙矾石的离子交换将As固定。该研究为As(Ⅲ)污染土的高效修复提供了新的视角。
    Abstract: The solidification/stabilization (S/S) is the most popular method for treatment of heavy metal-contaminated soils, however, the S/S treatment of As(Ⅲ)-contaminated soils is not effective due to the high mobility of As(Ⅲ). A combined remediation technique is proposed, in which As(Ⅲ) is first oxidized to As(Ⅴ) by the Fenton reagent, then stabilized by FeCl3 and finally stabilized by cement. The unconfined compressive strength tests, toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), pH measurements, sequential extraction procedure and spectroscopic investigations are carried out to investigate the effects and mechanism of the proposed technique. The results show that the Fenton pre-oxidation process significantly improves the remediation efficiency. Under an Fe-to-As molar ration of 1:1 and a cement dosage of 10%, the leaching toxicity of As in TCLP and SPLP is as low as 2.51 and 1.33 mg/L, and the immobilization efficiency reaches 97.46% and 98.53%, respectively. The hydration degree of the cement and the pore structure of the curing body are improved by FeCl3 and therefore the strength increases. The combined remediation can transform As to more stable phases and effectively reduce the potential environmental risk. The majority of As is bound to hydrous oxides of Fe, but an increase in pH due to the increasing cement dosage will affect the Fe-As binding and cause potential release of As. The spectroscopic investigations show that the proposed remediation can transform 92.5% of As(Ⅲ)to As(Ⅴ) and immobilize As by the encapsulation of calcium silicate hydrate and the ion exchange of ettringite. This study provides a new insight into the effective remediation of As(Ⅲ)-contaminated soils.
  • 图  1   修复后土样的pH

    Figure  1.   pH of treated soil

    图  2   修复后土样的无侧限抗压强度

    Figure  2.   UCS of treated soil

    图  3   仅用水泥固化时As的浸出浓度

    Figure  3.   Leached As concentrations after cement treatment

    图  4   联合修复后As的浸出浓度

    Figure  4.   Leached As concentrations after combined remediation

    图  5   不同方法修复后As的形态分布

    Figure  5.   Speciation of As after different treatments

    图  6   土样的XRD图谱

    Figure  6.   XRD patterns of specimens

    图  7   修复前后土样的XPS图谱

    Figure  7.   XPS spectra before and after treatment

    表  1   试验用土的金属含量

    Table  1   Metal contents in test soil (单位:mg/kg)

    金属元素 As Mn Al Fe Ca Mg
    含量 8.9 679 67700 13100 9650 2470
    下载: 导出CSV

    表  2   连续萃取试验步骤

    Table  2   Sequential extraction procedure

    形态 萃取剂 萃取条件 固液比 洗涤步骤
    F1 (NH4)2SO4 (0.05 mol/L) 震荡4 h,20 ℃ 1︰25
    F2 (NH4)H2PO4 (0.05 mol/L) 震荡16 h,20 ℃ 1︰25
    F3 草酸铵缓冲液(0.2 mol/L);pH 3.25 暗处震荡4 h,20 ℃ 1︰25 草酸铵溶液(0.2 mol/L);pH 3.25;固液比1︰12.5;暗处震荡10 min
    F4 草酸铵缓冲液(0.2 mol/L);+抗坏血酸(0.1 mol/L) pH 3.25 开盖和非避光条件下,96 ℃水浴处理30 min 1︰25 草酸铵溶液(0.2 mol/L);pH 3.25;固液比1︰12.5;暗处震荡10 min
    F5 HNO3/H2O2 微波消解 1︰50
    下载: 导出CSV
  • [1]

    LOUKOLA-RUSKEENIEMI K, MÜLLER I, REICHEL S, et al. Risk management for arsenic in agricultural soil-water systems: lessons learned from case studies in Europe[J]. Journal of Hazardous Materials, 2022, 424: 127677. doi: 10.1016/j.jhazmat.2021.127677

    [2]

    MOHAMMED ABDUL K S, JAYASINGHE S S, CHANDANA E P S, et al. Arsenic and human health effects: a review[J]. Environmental Toxicology and Pharmacology, 2015, 40(3): 828-846. doi: 10.1016/j.etap.2015.09.016

    [3]

    SONG P P, YANG Z H, ZENG G M, et al. Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review[J]. Chemical Engineering Journal, 2017, 317: 707-725. doi: 10.1016/j.cej.2017.02.086

    [4]

    FERREIRA R T, SILVA A R C, PIMENTEL C, et al. Arsenic stress elicits cytosolic Ca2+ bursts and Crz1 activation in Saccharomyces cerevisiae[J]. Microbiology, 2012, 158(9): 2293-2302. doi: 10.1099/mic.0.059170-0

    [5]

    TSANG D C W, HARTLEY N R. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances[J]. Environmental Science and Pollution Research, 2014, 21(5): 3987-3995. doi: 10.1007/s11356-013-2300-y

    [6] 查甫生, 刘晶晶, 许龙, 等. 水泥固化重金属污染土干湿循环特性试验研究[J]. 岩土工程学报, 2013, 35(7): 1246-1252. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15114.shtml

    ZHA Fusheng, LIU Jingjing, XU Long, et al. Cyclic wetting and drying tests on heavy metal contaminated soils solidified/stabilized by cement[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1246-1252. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15114.shtml

    [7] 杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. doi: 10.3969/j.issn.1000-7598.2011.01.019

    DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.019

    [8]

    PARK J Y, KANG W H, HWANG I. Hexavalent chromium uptake and release in cement pastes[J]. Environmental Engineering Science, 2006, 23(1): 133-140. doi: 10.1089/ees.2006.23.133

    [9]

    LI J S, BEIYUAN J, TSANG D C W, et al. Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification[J]. Chemosphere, 2017, 182: 31–39. doi: 10.1016/j.chemosphere.2017.05.019

    [10]

    PAN S Y, SHAH K J, CHEN Y H, et al. Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6429-6437.

    [11] 张亭亭, 李江山, 王平, 等. FeSO4对铬污染土的稳定特性及风险评价试验研究[J]. 岩土力学, 2019, 40(10): 3928-3936. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910027.htm

    ZHANG Tingting, LI Jiangshan, WANG Ping, et al. Stabilization characteristics and risk assessment of hexavalent chromium-contaminated soils by ferrous sulfate treatment[J]. Rock and Soil Mechanics, 2019, 40(10): 3928-3936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910027.htm

    [12]

    LI L, WANG X, ZHOU Y Y, et al. Effectiveness and limitation of A-nZVI for restoration of a highly As-contaminated soil[J]. Journal of Cleaner Production, 2021, 284: 124691. doi: 10.1016/j.jclepro.2020.124691

    [13]

    WANG Y N, TSANG Y F, WANG H W, et al. Effective stabilization of arsenic in contaminated soils with biogenic Manganese oxide (BMO) materials[J]. Environmental Pollution, 2020, 258: 113481. doi: 10.1016/j.envpol.2019.113481

    [14]

    ZHANG M Y, WANG Y, ZHAO D Y, et al. Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles[J]. Chinese Science Bulletin, 2010, 55(4): 365-372. http://library.rcees.ac.cn/bitstream/311016/21185/1/Immobilization%20of%20arsenic%20in%20soils%20by%20stabilized%20nanoscale%20zero-valent%20iron%2c%20iron%20sulfide%20(FeS)%2c%20and%20magnetite%20(Fe3%20O4%20)%20particles%20.pdf

    [15]

    MOON D H, WAZNE M, YOON I H, et al. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils[J]. Journal of Hazardous Materials, 2008, 159(2/3): 512-518. http://www.onacademic.com/detail/journal_1000034083474110_1577.html

    [16]

    XENIDIS A, STOURAITI C, PAPASSIOPI N. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 929-937. http://www.researchgate.net/profile/Christina_Stouraiti/publication/41190010_Stabilization_of_Pb_and_As_in_soils_by_applying_combined_treatment_with_phosphates_and_ferrous_iron/links/004635165087c9a5f1000000

    [17] 赵慧敏. 铁盐-生石灰对砷污染土壤固定/稳定化处理技术研究[D]. 北京: 中国地质大学(北京), 2010.

    ZHAO Huimin. Study on Solidification/Stabilization Technology of Arsenic Contaminated Soils Using Molysite and Quicklime[D]. Beijing: China University of Geosciences, 2010. (in Chinese)

    [18]

    NAZARI A M, RADZINSKI R, GHAHREMAN A. Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic[J]. Hydrometallurgy, 2017, 174: 258-281. doi: 10.1016/j.hydromet.2016.10.011

    [19]

    HUANG Y F, GAO M L, DENG Y X, et al. Efficient oxidation and adsorption of As(Ⅲ) and As(Ⅴ) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar[J]. The Science of the Total Environment, 2020, 715: 136957. doi: 10.1016/j.scitotenv.2020.136957

    [20]

    BURBANO A A, DIONYSIOU D D, SUIDAN M T, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent[J]. Water Research, 2005, 39(1): 107-118. doi: 10.1016/j.watres.2004.09.008

    [21]

    ZHANG W J, LIN M F. Influence of redox potential on leaching behavior of a solidified chromium contaminated soil[J]. Science of the Total Environment, 2020, 733: 139410. doi: 10.1016/j.scitotenv.2020.139410

    [22]

    WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2

    [23] 陈蕾, 杜延军, 刘松玉, 等. 水泥固化铅污染土的基本应力-应变特性研究[J]. 岩土力学, 2011, 32(3): 715-721. doi: 10.3969/j.issn.1000-7598.2011.03.013

    CHEN Lei, DU Yanjun, LIU Songyu, et al. Experimental study of stress-strain properties of cement treated lead-contaminated soils[J]. Rock and Soil Mechanics, 2011, 32(3): 715-721. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.013

    [24]

    AL-KINDI G. Evaluation the solidification/stabilization of heavy metals by Portland cement[J]. Journal of Ecological Engineering, 2019, 20(3): 91-100. doi: 10.12911/22998993/99739

    [25]

    LI J S, WANG L, CUI J L, et al. Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests[J]. Science of the Total Environment, 2018, 631/632: 1486-1494. doi: 10.1016/j.scitotenv.2018.02.247

    [26]

    YANG K, KIM B C, NAM K, et al. The effect of arsenic chemical form and mixing regime on arsenic mass transfer from soil to magnetite[J]. Environmental Science and Pollution Research, 2017, 24(9): 8479-8488. doi: 10.1007/s11356-017-8510-y

    [27]

    ZHA F S, LIU C M, KANG B, et al. Acid rain leaching behavior of Zn-contaminated soils solidified/stabilized using cement–soda residue[J]. Chemosphere, 2021, 281: 130916. doi: 10.1016/j.chemosphere.2021.130916

    [28] 查甫生, 许龙, 崔可锐. 水泥固化重金属污染土的强度特性试验研究[J]. 岩土力学, 2012, 33(3): 652-656, 664. doi: 10.3969/j.issn.1000-7598.2012.03.002

    ZHA Fusheng, XU Long, CUI Kerui. Strength characteristics of heavy metal contaminated soils stabilized/solidified by cement[J]. Rock and Soil Mechanics, 2012, 33(3): 652-656, 664. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.03.002

    [29]

    KARAK T, ABOLLINO O, BHATTACHARYYA P, et al. Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant (Camellia sinensis L. )[J]. Chemosphere, 2011, 85(6): 948-960. doi: 10.1016/j.chemosphere.2011.06.061

    [30]

    CAO Y Z, GUO L P, CHEN B, et al. Modeling early age hydration kinetics and the hydrated phase of cement paste blended with chloride and sulfate[J]. Construction and Building Materials, 2020, 261: 120537. doi: 10.1016/j.conbuildmat.2020.120537

    [31]

    COUSSY S, PAKTUNC D, ROSE J, et al. Arsenic speciation in cemented paste backfills and synthetic calcium-silicate-hydrates[J]. Minerals Engineering, 2012, 39: 51-61. doi: 10.1016/j.mineng.2012.05.016

    [32]

    CHRYSOCHOOU M, DERMATAS D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: literature review and experimental study[J]. Journal of Hazardous Materials, 2006, 136(1): 20-33. doi: 10.1016/j.jhazmat.2005.11.008

    [33]

    ZHANG M T, YANG C H, ZHAO M, et al. Immobilization potential of Cr(Ⅵ) in sodium hydroxide activated slag pastes[J]. Journal of Hazardous Materials, 2017, 321: 281-289. doi: 10.1016/j.jhazmat.2016.09.019

    [34]

    KIM E J, LEE J C, BAEK K. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents[J]. Journal of Hazardous Materials, 2015, 283: 454-461. doi: 10.1016/j.jhazmat.2014.09.055

    [35]

    ZHANG S J, LI X Y, CHEN J P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber[J]. Journal of Colloid and Interface Science, 2010, 343(1): 232-238. doi: 10.1016/j.jcis.2009.11.001

    [36]

    SUN M, ZHANG G, QIN Y H, et al. Redox conversion of chromium(Ⅵ) and arsenic(Ⅲ) with the intermediates of chromium(Ⅴ) and arsenic(Ⅳ) via AuPd/CNTs electrocatalysis in acid aqueous solution[J]. Environmental Science & Technology, 2015, 49(15): 9289-9297. doi: 10.1021/acs.est.5b01759

    [37]

    CHEN Z H, JIN J Y, SONG X J, et al. Redox conversion of arsenite and nitrate in the UV/quinone systems[J]. Environmental Science & Technology, 2018, 52(17): 10011-10018. http://www.ncbi.nlm.nih.gov/pubmed/30063337

    [38]

    KOPPENOL W H, STANBURY D M, BOUNDS P L. Electrode potentials of partially reduced oxygen species, from dioxygen to water[J]. Free Radical Biology and Medicine, 2010, 49(3): 317-322. doi: 10.1016/j.freeradbiomed.2010.04.011

    [39]

    HERNÁNDEZ-FLORES H, PARIONA N, HERRERA-TREJO M, et al. Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal[J]. Journal of Molecular Structure, 2018, 1171: 9-16. doi: 10.1016/j.molstruc.2018.05.078

图(7)  /  表(2)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  50
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 网络出版日期:  2023-02-15
  • 刊出日期:  2023-05-31

目录

    /

    返回文章
    返回