• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同压实度重塑黄土持水曲线测试及模型预测

王来才, 胡海军, 王晨, 康顺祥

王来才, 胡海军, 王晨, 康顺祥. 不同压实度重塑黄土持水曲线测试及模型预测[J]. 岩土工程学报, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037
引用本文: 王来才, 胡海军, 王晨, 康顺祥. 不同压实度重塑黄土持水曲线测试及模型预测[J]. 岩土工程学报, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037
WANG Lai-cai, HU Hai-jun, WANG Chen, KANG Shun-xiang. Measurement and prediction of water retention curve of remolded loess with different degrees of compaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037
Citation: WANG Lai-cai, HU Hai-jun, WANG Chen, KANG Shun-xiang. Measurement and prediction of water retention curve of remolded loess with different degrees of compaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 204-208. DOI: 10.11779/CJGE2021S1037

不同压实度重塑黄土持水曲线测试及模型预测  English Version

基金项目: 

国家自然科学基金青年科学基金项目 51409220

陕西省自然科学基础研究计划项目 2021JM-107

详细信息
    作者简介:

    王来才(1990— ),男,硕士,主要从事湿陷性黄土方面的研究。E-mail:979679394@qq.com

    通讯作者:

    胡海军, E-mail:hu.hai-jun@163.com

  • 中图分类号: TU444

Measurement and prediction of water retention curve of remolded loess with different degrees of compaction

  • 摘要: 为了研究不同压实度重塑黄土持水曲线,采用自制低吸力测试装置、张力计和GDS非饱和土三轴仪等仪器联合测定不同压实度重塑黄土持水曲线,并应用VG模型和基于VG模型考虑变形效应的持水曲线模型分别对单一压实度持水曲线拟合和所有压实度持水曲线拟合,得到模型参数并分析了预测精度。结果表明:采用多手段测试持水曲线的方法是可行的;不同压实度黄土VG模型拟合函数中进气值发生变化,而控制持水曲线变化速率的参数n除高压实度外都很接近,为考虑变形效应的持水模型函数形式提供了试验依据;基于VG模型考虑变形效应的持水曲线模型在预测不同压实度持水曲线方面具有足够的精度,可以用于具有不同压实度黄土填方中的持水曲线预测。
    Abstract: In order to study the water retention curve of remolded loess with different degrees of compaction, the self-made low suction measurement device, tensiometer and GDS unsaturated soil triaxial apparatus were used to measure the water retention curve of remolded loess with different degrees of compaction.The VG model and the model based on the VG model considering the deformation effect were adopted to fit the water retention curves under a single degree of compaction and all the degrees of all compaction, respectively, and the model parameters were obtained and the accuracy of fitting was analyzed.The results show that the method for measuring the water retention curve by using the multiple methods is feasible.For the fitted VG model, the air-entry value changes with different degrees of compaction, and the parameter n controlling the rate of change of the water retention curve is almost same except for the high degree of compaction, which provides a test basis for the form of the water retention curve function when considering the deformation effect.The water retention curve model considering the deformation effect based on the VG model has sufficient accuracy in predicting water retention curves of loess with different degrees of compaction, and can be used for the prediction of water retention curves of loess fills with different degrees of compaction.
  • 图  1   静水条件下土柱

    Figure  1.   Soil column with bottom at zero suction

    图  2   不同压实度重塑黄土持水曲线实测值与VG模型拟合值对比

    Figure  2.   Comparison between measured data of SWRC and fitting curves using VG model for remolded loess with different degrees of compaction

    图  3   不同压实度重塑黄土持水曲线实测值与本文统一模型预测值对比

    Figure  3.   Comparison between measured SWRCs and predicted curves using proposed model under different compaction degrees of remolded loess

    图  4   简化本文统一模型预测值与实测值对比

    Figure  4.   Comparison between measured and predicted SWRCs using proposed unified model

    表  1   试验土料物理性质指标

    Table  1   Physical properties of test soil

    颗粒相对密度Gs塑限wp/%液限wL/%塑性指数Ip最大干密度ρd/(g·cm-3)最优含水率wopt/%
    2.7118.735.116.41.7319.1
    下载: 导出CSV

    表  2   不同压实度黄土吸力测试方案

    Table  2   Suction measurement of loess with different degrees of compaction

    压实度饱和度Sr/%
    自制低吸力装置张力计GDS三轴仪
    0.7589,85,80,7570,65,6050,40
    0.8090,85,8075,70,65,6050,40
    0.9095,92.5,9085,82.5,8075,70,60,50
    1.0100,98.595,92.590,85,80,70
    下载: 导出CSV

    表  3   不同压实度重塑黄土VG模型拟合参数

    Table  3   Fitting parameters of VG model for remolded loess with different degrees of compaction

    压实度软件参数
    θsθrαn
    0.75RETC0.48850.36661.2024
    Origin0.48840.04170.36381.2238
    0.80RETC0.45400.11311.2262
    Origin0.45340.03520.11161.2545
    0.90RETC0.40460.02681.2680
    Origin0.404700.02741.2625
    1.0RETC0.36150.00401.6479
    Origin0.361400.00401.6558 
    下载: 导出CSV

    表  4   考虑变形效应的统一模型拟合参数

    Table  4   Fitting parameters for remolded loess with different degree of compaction using SWRC model considering deformation effect

    模型拟合参数相关系数R2
    Gallipoli等[7]a=0.455, b=7.01, n=1.250.978
    胡冉等[8]β=5.13×10-5, kp=9.18, n=1.250.975
    本文a=10.01, b=-17.23, c=10.00, d=-1.94, n=1.190.957
    下载: 导出CSV
  • [1] 西安冶金建筑学院建工系工民建专业73级队地基实践组. 陕西省焦化厂自重湿陷性黄土地基的试验研究[J]. 西安冶金建筑学院(自然科学版), 1977(2): 86-118. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ197702011.htm

    Xian Metallurgy Building Institute. Test research of collapse loess under overburden pressure in Shaanxi province coke plant[J]. Journal of Xi'an University of Architecture&Technology(Natural Science Edition), 1977(2): 86-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ197702011.htm

    [2] 建工部建筑科学研究院地基砖木研究室. 西安黄土地基浸水后变形范围的试验研究[J]. 建筑学报, 1961(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JZXB196103006.htm

    China Academy of Building Research Experimental research on deformation range of Xi'an loess foundation after soaking[J]. Architectural Journal, 1961(3): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZXB196103006.htm

    [3] 姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201003.htm

    YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on selfweight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201003.htm

    [4] 罗宇生. 湿陷性黄土地基评价[J]. 岩土工程学报, 1998, 20(4): 87-91. doi: 10.3321/j.issn:1000-4548.1998.04.021

    LUO Yu-sheng. Assessment of collapsible loess foundation[J]. ChineseJournalofGeotechnical Engineering, 1998, 20(4): 87-91. (in Chinese) doi: 10.3321/j.issn:1000-4548.1998.04.021

    [5] 张沛然. 沟谷填方非饱和黄土填料增减湿变形特性、模型及结构性分析研究[D]. 兰州: 兰州理工大学, 2018.

    ZHANG Pei-ran. Study on the Moistening and Drying Deformation Characteristics, Model and Structural Analysis of the Unsaturated Loess Filling with Gully Fill[D]. Lanzhou: Lanzhou University of Technology, 2018. (in Chinese)

    [6]

    HUANG SY, BARBOURSL , FREDLUNDDG . Development and verification of a coefficient of permeability function for a deformable unsaturated soil[J]. Canadian Geotechnical Journal, 1998, 35(3): 411-425. doi: 10.1139/t98-010

    [7]

    GALLIPOLI D, WHEELER S, KARSTUNEN M. Modelling the variationofdegreeofsaturationinadeformable unsaturated soil[J]. Geotechnique, 2003, 53(1): 105-112. doi: 10.1680/geot.2003.53.1.105

    [8] 胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451-1462. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308013.htm

    HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on the pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308013.htm

    [9] 张昭, 刘奉银, 赵旭光, 等. 考虑应力引起孔隙比变化的土水特征曲线模型[J]. 水利学报, 2013, 44(5): 578-585. doi: 10.3969/j.issn.0559-9350.2013.05.013

    ZHANG Zhao, LIU Feng-yin, ZHAO Xu-guang, et al. Asoil water characteristic curve model considering void ratiovariationwithstress[J]. JournalofHydraulic Engineering, 2013, 44(5): 578-585. (in Chinese) doi: 10.3969/j.issn.0559-9350.2013.05.013

    [10] 张登飞, 陈存礼, 张洁, 等. 等向压缩应力条件下原状黄土的吸湿持水特性[J]. 岩土工程学报, 2018, 40(7): 1344-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807028.htm

    ZHANG Deng-fei, CHEN Cun-li, ZHANG Jie, et al. Wetting water retention behavior of intact loess under isotropic compression stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1344-1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807028.htm

    [11] 孔金鹏, 胡海军, 樊恒辉. 压缩过程中饱和原状和饱和重塑黄土孔隙分布变化特征[J]. 地震工程学报, 2016, 38(6): 903-908. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201606009.htm

    KONG Jin-peng, HU Hai-jun, FAN Heng-hui. Pore distributioncharacteristicsofsaturatedintactand saturated remolded loess under compression[J]. China Earthguake Engineering Journal, 2016, 38(6): 903-908. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201606009.htm

  • 期刊类型引用(5)

    1. 李晓强,梁靖宇,路德春,苗金波,杜修力. 非饱和土的非正交弹塑性本构模型. 中国科学:技术科学. 2022(07): 1048-1064 . 百度学术
    2. 刘祎,蔡国庆,李舰,赵成刚. 非饱和土热–水–力全耦合本构模型及其验证. 岩土工程学报. 2021(03): 547-555 . 本站查看
    3. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
    4. 胡小荣,蔡晓锋,瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型. 应用数学和力学. 2021(08): 813-831 . 百度学术
    5. 杨光昌,白冰,刘洋,陈佩佩. 描述饱和砂土剪切特性的一个热力学本构模型. 哈尔滨工业大学学报. 2021(11): 93-100 . 百度学术

    其他类型引用(7)

图(4)  /  表(4)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  22
  • PDF下载量:  69
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-12-14
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回