Prediction of permeability of clay by modified Kozeny-Carman equation
-
摘要: Kozeny-Carman方程具有明确的物理意义被广泛用于粗粒土渗透系数的计算。为了提高其预估黏土渗透系数的准确度,首先建立等径球形颗粒理论模型,量化结合水占据总孔隙的份额,计算结果表明黏土颗粒间的孔隙几乎都被结合水占据,渗透性受到了极大的影响。然后利用界限含水率与结合水含量的关系,得到了黏土液限含水率推求有效孔隙比的计算公式,对常用的Kozeny-Carman方程进行修正。最后借助热失重试验测算出合肥黏土中结合水质量占液限的比例系数α0选取合肥原状黏土的相关物理参数,分别代入未修正和修正后的Kozeny-Carman方程中,将得到的渗透系数计算值与室内试验的实测值进行对比,发现经修正的Kozeny-Carman方程能较为准确地预估黏土渗透系数,具有一定的实用性。
-
关键词:
- 饱和黏土 /
- 等径球形颗粒理论模型 /
- 有效孔隙比 /
- 界限含水率 /
- 热重分析试验 /
- Kozeny-Carman方程
Abstract: The Kozeny-Carman equation has definite physical meaning, and can be widely used in calculating the permeability coefficient of sand.In order to improve the accuracy of using the conventional Kozeny-Carman equation to predict the permeability coefficient for saturated clay, firstly, the theoretical model for equal spherical particle is established, quantifying the share of absorbed water film occupied total pore space, so the permeability is greatly affected.According to the relationship between Atterberg limits and content of absorbed water film, the formula for calculating the efficient void ratio is derivated by the liquid limit.Then, the conventional Kozeny-Carman equation is modified.Finally, the proportion coefficient of absorbed water quality to liquid limit in Hefei clay is calculated by thermal gravimetric tests.Substituting the relevant physical parameters of Hefei clay into the unmodified and modified Kozeny-Carman equation, by comparing the calculated permeability coefficient with the measured value of laboratory tests, the results show that the modified Kozeny-Carman equation can be more accurate for estimating the permeability coefficient of clay. -
0. 引言
近年来,我国地铁建设迅猛发展,各大城市地铁线网日益密集,受到地下既有建筑影响,地铁隧道重叠情况屡见不鲜[1-2]。地铁运营时,列车与轨道相互作用产生行车荷载,使得重叠隧道受到动应力场长期往复作用,地铁隧道和周围地层产生明显影响。尤其是软土地区地层中,地铁运营过程中极易因地层非均匀沉降导致隧道结构产生损坏,造成安全事故[3]。因此,开展地铁行车荷载作用下重叠隧道变形研究具有重要意义。
目前,国内外学者对于行车荷载作用下地层与隧道变形开展了广泛研究。地层方面:安俊杰等[4]采用仿真软件COMSOL进行计算,分析车辆载重等5个与行车荷载有关的因素对隧道及地层变形影响;郑海忠等[5]选取某高速铁路及周围场地,研究高速列车运行引起地层沉降问题;陈凡等[6]建立有限元模型,分析列车荷载作用下液化砂土改良前后地层沉降;葛世平等[7]监测上海某地铁线周边土层,在行车荷载作用下隧道周边土层在隧道拱顶产生沉降。隧道结构方面:莫海鸿等[8]利用有限差分法得到隧道结构变形从底端到顶端减小;杨文波等[9]研究高速行车荷载作用下隧道结构变形,得出隧道变形规律;高峰等[10]以某地铁近距离重叠隧道为背景,研究地铁运营期间行车荷载对隧道结构的影响。然而,现有研究集中在行车荷载作用下单隧道变形,少有重叠隧道变形的研究,且缺乏行车荷载不同施加位置的影响。
综上所述,本文针对地铁行车荷载作用下地层及隧道变形问题,依托天津某重叠隧道工程,利用ABAQUS有限元软件,建立地铁行车荷载作用下重叠隧道数值模型,研究行车荷载不同施加位置对地层和重叠隧道变形的影响,为重叠隧道的设计提供参考。
1. 地铁行车荷载确定
1.1 依托工程简介
本文选取天津地铁某双线重叠隧道为依托工程,空间布置如图 1所示。该工程上、下隧道直径均为6.4 m,上隧道覆土厚度6.8 m,两隧道之间距离7.2 m。根据勘察资料,该区域属于河海冲击平原,在钻孔50 m深度范围内均是第四系全新土,地层由上往下为杂填土、粉质黏土、砂质粉土、粉质黏土、粉土和粉质黏土。
1.2 地铁行车荷载确定
根据研究[11-12],用激振力函数模拟行车荷载,包括车轮静载和正弦函数叠加的动荷载。
激振力模拟函数表达式确定如下:
F(t)=P0+P1sin(ω1t)+P2sin(ω2t)+P3sin(ω3t) (1) Pi=M0αiω2i, (2) ωi=2πLi。 (3) 式中:P0是单个车轮静荷载;P1、P2、P3分别为低频(0.5~5 Hz)、中频(30~60 Hz)、高频(200~400 Hz)范围荷载振动峰值;M0为弹簧下质量;ω为不平顺振动波长的圆频率;t为振动波长的作用时间;α为矢高;L为列车不平顺振动波长。
根据研究[13],P0= 70 kN,M0= 750 kg,波长和矢高:L1= 10 m,α1= 3.5 mm;L2= 2 m,α2= 0.4 mm;L3= 0.5 m,α3= 0.08 mm。荷载函数表达式如下所示:
F(t)=70000+287.6sin10.47t+821.6sin52.33t+2629.2sin209.33t。 (4) 则前1 s内地铁行车荷载时程曲线,如图 2所示。
2. 数值模型建立
2.1 模型建立
基于依托工程,采用ABAQUS有限元软件,进行重叠隧道变形数值模拟,利用现场实测数据验证数值模拟结果的可靠性,详见文献[14]。
图 3为沿Y轴切割一半的地铁行车荷载作用下重叠隧道有限元模型(工况C1:行车荷载作用于上隧道)。研究表明[15],数值模型计算范围沿隧道直径每个方向都不少于3~4倍。模型尺寸为40 m×46 m×63 m,其隧道直径、覆土厚度、空间布置等与依托工程一致。模型土体为5层,从上往下为粉质黏土(2.5 m)、砂质粉土(3.0 m)、粉质黏土(10 m)、粉土(12.3 m)和粉质黏土(17.9 m),采用修正剑桥模型,参数见表 1。隧道和道床采用线弹性本构模型,参数取值为:密度ρ= 2400 kg/m3,弹性模量E= 2.93×104 MPa,泊松比ν= 0.2。
表 1 土层参数Table 1. Parameters of soil strata土层 重度/(kN·m-3) 塑性体积模量对数 应力比 渗透系数/(m·d-1) 孔隙比 体积模量对数 泊松比 ①粉质黏土 18.4 0.058 0.86 0.00018 0.776 0.0072 0.32 ②砂质粉土 17.9 0.031 1.03 0.00050 0.742 0.0039 0.35 ③粉质黏土 10.3 0.055 0.89 0.00031 0.764 0.0069 0.35 ④粉土 12.2 0.020 1.37 2.00000 0.595 0.0025 0.30 ⑤粉质黏土 18.0 0.047 0.90 0.00485 0.683 0.0059 0.35 2.2 模拟方案
基于地铁行车荷载作用于上隧道数值模型(工况C1),改变施加位置,建立地铁行车荷载作用于下隧道(工况C2)和双隧道(工况C3)的两组数值模型,开展不同荷载施加位置对地层和重叠隧道变形影响的研究。三种工况模拟方案见表 2。
表 2 模拟方案Table 2. Simulation schemes工况 地铁行车荷载施加位置 上隧道 下隧道 C1 √ × C2 × √ C3 √ √ 3. 结果分析
3.1 地层竖向位移
图 4为三种工况下,地层不同深度处的竖向位移。地层沉降为负值,隆起为正值。
由图 4(a)可以看出,在地表位置,三种工况均发生沉降,但工况C2和工况C1、C3曲线差异较大。隧道中心处最大竖向位移(Smax)由大到小为:工况C1、工况C3、工况C2,沉降槽宽度(i)均为1.43D。工况C2地表沉降最小,曲线最平缓,这由于地铁行车荷载施加在下隧道,下隧道与地表距离较远,上隧道阻隔荷载传递。工况C1和C3沉降曲线趋势相同,但工况C1大于工况C3。说明下隧道施加行车荷载减小地表沉降。这由于上、下隧道施加行车荷载叠加后互相削弱。
由图 4(b)可以看出,在隧道之间位置,三种工况均发生沉降,工况C1和C3沉降曲线呈“W”型。Smax由大到小为:工况C1、工况C3、工况C2,i比地表大,为1.67D。“W”型沉降的原因是:工况C1和C3行车荷载作用于上隧道,上隧道覆土厚度较小,存在地铁行车荷载作用时隧道周围地层形成约束反力,抑制变形。工况C1沉降大于工况C2,原因是工况C1取值位置在施加荷载下方,工况C2取值位置在施加荷载上方。
由图 4(c)可以看出,在下隧道下方位置,三种工况均发生沉降,工况C3沉降曲线非常平缓,几乎趋于直线。Smax最大为工况C2,工况C1次之,工况C3最小;与地表和隧道之间位置相比,i最大为2.16D。工况C3之所以平缓,可能是在上下同时施加荷载情况下,上下行车荷载之间相互作用,削弱周边地层竖向位移。
以上分析表明,不同位置施加行车荷载对地层竖向位移有明显影响。Smax值与取值点到行车荷载作用隧道距离有关,距离较近,Smax值则大;反之,则小。i值与数据提取位置相关,深度增加,i值增大。
3.2 地层水平位移
图 5是地铁行车荷载作用下地层水平位移。其中,图 5(a)是三种工况作用下右侧距隧道中心0.75 D处的地层水平位移,图 5(b)是工况C1在右侧距隧道中心不同距离(0.75D、1D、1.5D、2D和3D)的地层水平位移。地层水平位移向内为负值,向外为正值。
由图 5(a)可知,三种工况作用下,最大地层水平位移为工况C3,工况C1次之,最小为工况C2。工况C1和C3的最大水平位移发生在上隧道施加荷载位置,工况C2最大水平位移发生在下隧道施加荷载位置。这可能是由于工况C1和C3的地铁行车荷载施加位置在上隧道,工况C2施加在下隧道。此外,当深度小于3D时,工况C1和C3位移曲线相似;当深度大于3D时,工况C1和工况C2位移曲线相似。在上隧道施加荷载位置,工况C1和C3产生的水平位移向外,且为最大位移位置,工况C2产生的水平位移向内。在下隧道施加荷载位置,工况C1和C2产生向外位移,工况C3位移很小。这可能由工况C3中上下荷载互相作用抑制变形所导致。
由图 5(b)可知,随着距隧道中心的距离从小到大(0.75D,1D,1.5D,2D,3D),地层水平位移减小。当距离小于1D时,地层水平位移较大;当距离大于2D时,地层水平位移很小,距离1.5D介于两者之间。由此推断,距隧道中心1.5D为地铁行车荷载临界影响范围。
3.3 隧道纵向变形
图 6(a)为工况C1中隧道纵向变形矢量图。上、下隧道的变形向下,上隧道变形明显大于下隧道。这是工况C1只在上隧道施加地铁行车荷载导致。地铁行车荷载引发上隧道变形,向下传递进而引发下隧道变形,但传递过程能量损耗,使得下隧道变形较小。
图 6(b)为工况C2中隧道纵向变形矢量图。上、下隧道的变形向下;与工况C1不同的是,上隧道变形小于下隧道,但相差没有很大。因为工况C2只在下隧道施加地铁行车荷载,下隧道变形较大,但下隧道埋深较大抑制变形,没有像工况C1中两隧道变形差很大。
图 6(c)为工况C3中隧道纵向变形矢量图。两隧道变形向下,但上隧道变形远大于下隧道。这解释3.1节图 4(c)中工况C3沉降较小且曲线平缓的现象。可能是两隧道同时施加的地铁行车荷载相互耦合削弱荷载,抑制下隧道变形。
以上分析表明,地铁行车荷载施加于不同位置会对上、下隧道纵向变形产生不同影响。工况C1、C2和C3中两隧道纵向变形方向阐明地层位移沉降的原因。
3.4 隧道横向变形
图 7是三种工况作用下隧道横向变形,主要发生在顶部和底部。
在工况C1中,上隧道横向变形较大,最大值为25.6 mm,下隧道横向变形较小。在工况C2中,上隧道横向变形较小,几乎处处相等,下隧道横向变形较大,最大值为20 mm。在工况C3中,两隧道横向变形曲线相似,最大变形发生在隧道底部,上隧道最大变形为24 mm,下隧道最大变形为16.8 mm。
4. 结论
本文以天津地铁某双线重叠隧道为研究对象,用激振力函数确定地铁行车荷载,通过ABAQUS有限元软件,建立地铁行车荷载不同施加位置重叠隧道变形模型,分析地层和重叠隧道变形响应。得到如下结论:
(1)地层位移方面:地铁行车荷载的施加位置对地层竖向和水平位移产生响应。Smax值与取值位置到行车荷载作用隧道的距离有关;i值与数据提取位置相关。对于水平位移,距隧道中心1.5D为地铁行车荷载的临界影响范围。
(2)隧道变形方面:地铁行车荷载的施加位置对隧道纵向和横向变形产生影响。三种工况作用下,两隧道纵向变形均表现为整体下沉。两隧道同时施加地铁行车荷载会相互耦合,削弱荷载大小,抑制下隧道较大变形。工况C1中上隧道产生较大横向变形,下隧道变形值较小且几近不变;工况C2中隧道横向变形与C1相反;工况C3中在隧道底部两隧道产生较大变形。
-
表 1 热重分析结果
Table 1 Results of thermal gravimetric tests
试样编号 自由水失重区间/℃ 自由水/% 弱结合水失重区间/℃ 弱结合水/% 强结合水失重区间/℃ 强结合水/% HF-8 RT~55.59 3.08 55.59~115.59 18.83 115.59~248.59 2.46 HF-23 RT~58.45 3.97 58.45~105.24 24.70 105.24~249.57 3.23 表 2 合肥黏土的土工指标
Table 2 Properties of Hefei clay
试样编号 相对质量密度GS 液限wL/% 天然孔隙比e 渗透系数k/(10-8 cm·s-1) HF-4 2.64 38.7 0.884 1.13 HF-6 2.69 35.9 0.964 1.55 HF-8 2.68 32.2 0.996 9.35 HF-9 2.55 42.0 0.981 5.72 HF-11 2.66 35.6 0.915 5.37 HF-14 2.52 41.9 0.933 1.95 HF-23 2.50 50.3 0.962 0.885 表 3 合肥黏土渗透系数计算结果
Table 3 Calculated results of permeability coefficient of Hefei clay
试样编号 有效孔隙比eu 未修正渗透系数/(10-6) 修正渗透系数/(10-9) 实测渗透系数/(10-8) HF-4 0.141 1.27 8.480 1.130 HF-6 0.261 1.28 39.800 1.550 HF-8 0.368 1.72 127.00 9.350 HF-9 0.202 1.65 23.800 5.720 HF-11 0.226 1.39 32.700 5.370 HF-14 0.165 1.46 13.400 1.950 HF-23 0.047 1.28 0.282 0.885 -
[1] 谷任国, 房营光. 极细颗粒黏土渗流离子效应的试验研究[J]. 岩土力学, 2009, 30(6): 1595-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906011.htm GU Ren-guo, FANG Ying-guang. Experiment study on the ion effects on fine grained soil seepage[J]. Rock and Soil Mechanics, 2009, 30(6): 1595-1598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906011.htm
[2] SINGH P N, WALLENDER W W. Effects of adsorbed water layer in predicting saturated hydraulic conductivity for clays with Kozeny-Carman equation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 829-836. doi: 10.1061/(ASCE)1090-0241(2008)134:6(829)
[3] 刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2291. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200908016.htm LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al. Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2286-2291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200908016.htm
[4] 王铁行, 李彦龙, 苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 2014, 36(5): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm WANG Tie-hang, LI Yan-long, SU Li-jun. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 942-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm
[5] REDDI L N, THANGAVADIVELU S. Representation of compacted clay minifabric using random networks[J]. Journal of GeotechnicalEngineering, 1996, 122(11): 906-913.
[6] 何俊, 施建勇. 膨润土中饱和渗透系数的计算[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3920-3925. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2047.htm He Jun, Shi Jian-yong. Calculation of satureated permeability ofbentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3920-3925. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2047.htm
[7] 梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm Liang Jian-wei, Fang Ying-guang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222-1230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm
[8] 崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006026.htm CUI De-shan, XIANG Wei1, CAO Li-jing, et al. Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006026.htm
[9] CARMAN P C. Fluid flow through granular beds[J]. Trans Inst Chem Eng, 1937, 75(1): 150-166.
[10] CARMAN P C. Permeability of saturated sands, soils and clays[J]. Agric Sci, 1939, 29(2): 263-273.
[11] 党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909-1917. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, etal. Researchingclayeyempirical formula of permeability coefficient based on the theory of effective porosity ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909-1917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
[12] 王平全. 黏土表面结合水定量分析及水合机制研究[D]. 南充: 西南石油学院, 2001. WANG Ping-quan. The Study for Quantitative Analysis of Water Absorbed on Clays and Their Hydration Mechanism[D]. Nanchong: Southwest Petroleum Institute, 2001. (in Chinese)
-
期刊类型引用(3)
1. 张新军,张春雷,秦雨霏,沈威,王建望. 地面荷载对城市隧道围岩变形破坏特征影响. 水利与建筑工程学报. 2025(02): 191-196 . 百度学术
2. 李星,龚贵友,何俊雄. 地表埋深对大跨径地铁隧道变形影响分析. 黑龙江交通科技. 2024(11): 126-130 . 百度学术
3. 陈超峰,丁智,孙宏磊,王震. 列车振动对水下隧道影响研究综述. 低温建筑技术. 2024(10): 81-85 . 百度学术
其他类型引用(0)