Reliability analysis of soil nailing-reinforced slopes considering fuzzy randomness
-
摘要: 针对土钉加固边坡未考虑边坡模糊随机性问题,提出考虑土体参数模糊随机性与边坡模糊过渡区间的土钉加固边坡可靠度计算方法。将土体样本试验力学参数随机值转换为模糊随机变量;在模糊随机变量与模糊过渡区间的基础上,建立模糊随机极限状态方程;确定土体参数不同λ-截集上下限及与之对应的边坡滑裂面;推导出仅与土体参数变量相关的土钉加固边坡可靠度计算公式,得到土钉加固边坡模糊随机可靠度。最后与传统蒙特卡洛模拟法计算出的可靠度进行对比得出:应用蒙特卡洛模拟计算出的失效概率为零时,考虑边坡模糊性后边坡失效概率为5.9%,表明考虑边坡模糊性与模糊过渡区间的加固边坡可靠度分析更能反映边坡实际状态。Abstract: With regard to the problem of no cosideration of the fuzzy randomness of slopes reinforced by soil nailing, a method for calculating the reliability of soil nailing-reinforced slopes is proposed considering the fuzzy randomness of soil parameters and the fuzzy transition interval of the slopes.Firstly, the random values of mechanical parameters for soil sample tests are converted into the fuzzy random variables.Based on the fuzzy random variables and the fuzzy transition interval, an equation for the fuzzy random limit state is established.The upper and lower limits of the λ-cut set and the corresponding slip surface of slopes are determined.Then, the formula for calculating the reliability of soil nailing-reinforced slopes only related to the soil parameter variables is derived, and the fuzzy random reliability of soil nailing-reinforced slopes is obtained.Finally, the calculated results are compared with those calculated by the traditional Monte Carlo simulation method.It is shown that the reliability analysis of reinforced slopes considering fuzzy transition interval and fuzzy randomness of soil parameters can better reflect the actual state of reinforced slopes.
-
Keywords:
- soil parameter /
- soil nailing /
- fuzzy randomness /
- fuzzy transition interval /
- reliability
-
-
表 1 土体的物理力学参数
Table 1 Physico-mechanical parameters of soils
参数 c/kPa φ/(°) 考虑随机性 均值 16.5633 24.0411 方差 7.3752 3.8890 考虑模糊随机性 均值 16.2960 24.0278 方差 7.2643 3.7144 表 2 模糊随机可靠度
Table 2 Fuzzy random reliabilities
λ c- c+ φ- φ+ b- b+ R- R+ S- S+ λ Z- Z+ μZ σZ β- β+ Prλ 0.75 14.8504 17.7416 22.9941 25.0615 -55 55 446.3929 486.7471 300.8916 327.4468 0.75 1.3633 1.6177 118.9461 185.8555 152.4008 62.3736 1.5616 3.3251 0.9408 0.9996 0.9856 0.80 15.0228 17.5692 23.1174 24.9382 -44 44 453.7152 528.0391 329.9547 337.3319 0.80 1.3450 1.6003 116.3833 198.0844 157.2338 86.478 1.3094 2.3270 0.9048 0.9900 0.9595 0.85 15.2095 17.3825 23.2508 24.8048 -33 33 425.6826 520.0764 300.8915 334.8997 0.85 1.2711 1.7285 90.7829 219.1849 154.9839 159.2538 0.7660 1.1804 0.7782 0.8811 0.8330 0.90 15.4211 17.1709 23.4022 24.6534 -22 22 463.7094 466.4952 295.2597 329.9547 0.90 1.4054 1.5799 133.7547 171.2355 152.4951 57.73513 2.2602 3.0223 0.9881 0.9987 0.9951 0.95 15.6856 16.9064 23.5913 24.4643 -11 11 470.4071 510.8604 329.9547 337.3319 0.95 1.3945 1.5483 133.0752 180.9057 156.9905 105.5953 1.3825 1.5909 0.9166 0.9442 0.9311 1.00 16.2960 16.2960 24.0278 24.0278 0 0 448.5147 448.5147 298.0881 298.0881 1.0 1.5046 1.5046 150.4266 150.4266 152.4266 94.2872 1.5954 1.5954 0.9447 0.9447 0.9447 表 3 蒙特卡洛模拟分析结果
Table 3 Analysis results of Monte Carlo simulation
平均安全系数 可靠度指标 失效概率/% 最小安全系数 最大安全系数 试验次数 1.9819 5.9791 0.0000 1.4407 2.6482 10000 -
[1] 熊文林, 李胡生. 岩石样本力学参数值的随机-模糊处理方法[J]. 岩土工程学报, 1992, 14(6): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199206012.htm XIONG Wen-lin, LI Hu-Sheng. A random-fuzzy method for treating the experimental data of mechanical parameters of rock sample[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 101-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199206012.htm
[2] 贾厚华, 贺怀建. 边坡稳定模糊随机可靠度分析[J]. 岩土力学, 2003, 24(4): 657-660. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200304042.htm JIA Hou-hua, HE Huaijian. Analysis of fuzzy-random reliability of slope stability[J]. Rock and Soil Mechanics, 2003, 24(4): 657-660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200304042.htm
[3] 吕玺琳, 钱建固, 吕龙, 等. 边坡模糊随机可靠性分析[J]. 岩土力学, 2008, 29(12): 3437-3442. doi: 10.3969/j.issn.1000-7598.2008.12.048 LÜ Xi-lin, QIAN Jian-guo, LÜ Long, et al. Fuzzy stochastic reliability analysis of slopes[J]. Rock and Soil Mechanics, 2008, 29(12): 3437-3442. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.12.048
[4] 王宇, 贾志刚, 李晓, 等. 边坡模糊随机可靠性分析的模糊点估计法[J]. 岩土力学, 2012, 33(6): 1795-1800. doi: 10.3969/j.issn.1000-7598.2012.06.030 WANG Yu, JIA Zhi-gang, LI Xiao, et al. Fuzzy random reliability analysis of slope based on fuzzy point estimate method[J]. Rock and Soil Mechanics, 2012, 33(6): 1795-1800. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.06.030
[5] El-RAMLY H, MORGENSTERN N R, CRUDEN D M. Probabilistic slopestabilityanalysisforpractice[J]. Canadian Geotechnical Journal. 2002, 39(3): 665-683. doi: 10.1139/t02-034
[6] WONG F S. Slope reliability and response surface method[J]. Journal of Geotechcal Engineering, 1985, 111(1): 32-53. doi: 10.1061/(ASCE)0733-9410(1985)111:1(32)
[7] GRIFFITHS D. V, FENTON G A. Probabilistic slope stability analysisbyfiniteelements[J]. Journalof Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518. doi: 10.1061/(ASCE)1090-0241(2004)130:5(507)
[8] YE S. H, FANG G W, MA X R. Reliability analysis of grillage flexible slope supportingstructurewithanchors considering fuzzy transitional interval and fuzzy randomness of soil parameters[J]. Arabian Journal for Science and Engineering, 2019, 44(10): 8849-8857.
[9] 朱彦鹏, 罗晓辉, 周勇. 支挡结构设计[M]. 北京: 高等教育出版社, 2008. ZHU Yan-peng, LUO Xiao-hui, ZHOU Yong. Design of Retaining Structures[M]. Beijing: Higher Eduation Press. (in Chinese)
[10] 朱彦鹏, 李忠. 深基坑土钉支护稳定性分析方法的改进及软件开发[J]. 岩土工程学报, 2005, 27(8): 939-943. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200508018.htm ZHU Yan-peng, LI Zhong. Improvement on stability analysis of soil nailing in foundation excavations and its software development[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 939-943. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200508018.htm
-
期刊类型引用(14)
1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
2. 孙小宸,宿利平,刘洋. 基于液化势指标的砂土抗液化评价方法及应用. 工程地质学报. 2023(02): 671-679 . 百度学术
3. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 . 百度学术
4. 刘军,苗现国,许军龙,卓慧英,牛天娇. 砂土相对密度试验研究和探讨. 工程勘察. 2023(09): 26-34 . 百度学术
5. 瞿茹,朱长歧,刘海峰,王天民,马成昊,王星. 珊瑚砂界限干密度确定方法的比较研究. 岩土力学. 2023(S1): 461-475 . 百度学术
6. 李志鹏,糟凯龙,何建新,杨海华. 粉煤灰掺量对改良沙漠土毛细水上升规律的影响分析. 粉煤灰综合利用. 2022(01): 87-92 . 百度学术
7. 李识博,代俊芳,吴江伟,肖乐乐. 考虑粒组分类影响的最小孔隙比分布及模型验证. 岩土力学. 2022(S2): 193-204 . 百度学术
8. 戴仁辉,李明东,陈士军,易进翔,高玉峰. 不同粒度粗粒的极限孔隙比和破碎特征. 建筑材料学报. 2021(02): 427-431+439 . 百度学术
9. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗透侵蚀下砂性土细颗粒流失率预测方法. 地下空间与工程学报. 2021(06): 1704-1712 . 百度学术
10. 刘勇,廖燕. 动荷载作用下砂土强度弱化的试验研究. 四川建筑科学研究. 2020(01): 65-70 . 百度学术
11. 赵文丽. 黏粒含量对砂土抗剪强度影响的试验研讨. 建材与装饰. 2020(18): 203+205 . 百度学术
12. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗流作用下颗粒土起动临界坡降研究. 地下空间与工程学报. 2020(S1): 87-93 . 百度学术
13. 吴加武. 挤密砂桩在直立式护岸抗液化处理中的应用. 土工基础. 2019(01): 27-30+34 . 百度学术
14. 黎亮,杨晓松,李宏伟. 南疆绿洲区含残膜砂土击实特性试验研究. 公路. 2019(11): 199-203 . 百度学术
其他类型引用(14)