Earth pressure problems under different plane strain strength theories and their application
-
摘要: 针对于实际工程中大量存在的挡土墙、基坑等平面应变问题,依据Mohr-Coulomb、SMP、
空间滑动面、Lade-Duncan、AC-SMP和广义Mises强度准则所建立的平面应变条件下的中主应力公式,推导出了基于各强度准则的主、被动土压力计算公式,将其推广至黏性土,对平面应变条件下的主、被动土压力进行了计算与分析,并与实测土压力数据进行了对比分析。研究结果表明,土破坏时中主应力的发挥程度对土压力的大小影响显著;Mohr-Coulomb强度准则未考虑中主应力效应,计算的主动土压力偏大,被动土压力偏小,在设计上趋于保守;SMP强度准则、Lade-Duncan强度准则、 空间滑动面强度准则、AC-SMP强度准则的计算结果更接近实测土压力,其中AC-SMP强度准则的计算结果最为准确;广义Mises强度准则的土压力计算结果不再适宜于描述挡墙上土压力的大小。在进行平面应变问题的挡土结构工程设计时,可选择相适应的土压力计算公式,考虑平面应变条件下中主应力对土强度的贡献,充分发挥土的强度潜能,在工程建设中提高经济效益。Abstract: A great number of problems in practical projects like retaining walls and foundation pits are under plane strain state.According to the formulas for the intermediate principal stress under the plane strain established by Mohr-Coulomb, SMP, spatially mobilized plane, Lade-Duncan, AC-SMP strength criterion and generalized Mises criterion, the formulas for the active earth pressure and passive earth pressure are derived in these strength criterions and extended to clay, the calculated active and passive earth pressures are compared with the measured data.The results indicate that the development degree of the intermediate principal stress has a significant impact on the earth pressure in the process of soil break.The calculated active earth pressure in the Mohr-Coulomb strength criterion is larger and the passive earth pressure is smaller than the practical one because the effect of the intermediate principal stress is not considered, and the design tends to be conservative.The calculated results by the criteria of SMP, spatially mobilized plane, Lade-Duncan and the AC-SMP strength are close to the measured data, among which the results by the AC-SMP strength criterion is much closer.The earth pressure calculated by the generalized Mises criterion is no longer appropriate to describe that on the retaining wall.When design the retaining structures under the plane strain state, appropriate formula should be chosen to consider the contribution of the intermediate principal stress so as to give full play of the potential strength of soil and to improve the economic benefits in project construction.-
Keywords:
- plain strain /
- strength criterion /
- intermediate principal stress /
- earth pressure
-
-
-
[1] 江强, 朱建明, 姚仰平. 基于SMP准则的土体三维应力状态土压力问题[J]. 岩土工程学报, 2006, 28(S1): 1415-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1022.htm JIANG Qiang, ZHU Jian-ming, YAO Yang-ping. Earth pressures of three-dimensional soil stress states based on SMP failure criterion[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(S1): 1415-1417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1022.htm
[2] 谢群丹, 何杰, 刘杰, 等. 双剪统一强度理论在土压力计算中的应用[J]. 岩土工程学报, 2003, 25(3): 343-345. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200303019.htm XIE Qun-dan, HE Jie, LIU Jie, et al. The application of the double-shear unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 343-345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200303019.htm
[3] 邵生俊, 陈菲, 邓国华. 基于平面应变统一强度公式的结构性黄土填料挡墙地震被动土压力研究[J]. 岩土力学, 2019, 40(4): 1255-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904003.htm SHAO Sheng-jun, CHEN Fei, DENG Guo-hua. Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula[J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904003.htm
[4] ZHANG J M, SONG F, LI D J. Effects of strain localization on seismic active earth pressures[J]. Journal of Geotechnical&Geoenvironmental Engineering, 2010, 136(7): 999-1003.
[5] 路德春, 张在明, 杜修力, 等. 平面应变条件下的极限土压力[J]. 岩石力学与工程学报, 2008, 27(S2): 3354-3359. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S2012.htm LU De-chun, ZHANG Zai-ming, DU Xiu-li, et al. Limit earth pressure under plane strain condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3354-3359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2008S2012.htm
[6] MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974(232): 59-70.
[7] 庄心善, 李德贤, 何怡. 基于Lade-Duncan屈服准则的土压力计算[J]. 土工基础, 2007, 21(5): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC200705014.htm ZHUAGN Xing-shan, LI De-xian, HE Yi. Calculation of earth pressure based on the Lade-Duncan yield criterion[J]. Soil Engineering and Foundation, 2007, 21(5): 40-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC200705014.htm
[8] 张玉, 邵生俊, 赵敏, 等. 平面应变条件下土的强度准则在黄土工程问题中的应用研究[J]. 土木工程学报, 2018, 51(8): 71-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201808008.htm ZHANG Yu, SHAO Sheng-jun, ZHAO Min, et al. Application research of soil strength criterion in loess engineering problems under plane-strain condition for loess problems[J]. China Civil Engineering Journal, 2018, 51(8): 71-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201808008.htm
[9] 邵生俊, 张玉, 陈昌禄, 等. 土的 空间滑动面强度准则及其与传统准则的比较研究[J]. 岩土工程学报, 2015, 37(4): 577-585. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312030.htmSHAO Sheng-jun, ZHANG Yu, CHEN Chang-lun, et al. Strength criterion based on
spatially mobilized plane of soil and its comparison with conventional criteria[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 577-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312030.htm[10] 周应英, 任美龙. 刚性挡土墙主动土压力的试验研究[J]. 岩土工程学报, 1990, 12(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199002002.htm ZHOU Ying-ying, REN Mei-long. An experimental study on active earth pressure behind rigid retaining wall[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(2): 19-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199002002.htm