• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

框架预应力锚杆支护边坡稳定性极限分析

朱彦鹏, 侯喜楠, 马响响, 杨奎斌

朱彦鹏, 侯喜楠, 马响响, 杨奎斌. 框架预应力锚杆支护边坡稳定性极限分析[J]. 岩土工程学报, 2021, 43(S1): 7-12. DOI: 10.11779/CJGE2021S1002
引用本文: 朱彦鹏, 侯喜楠, 马响响, 杨奎斌. 框架预应力锚杆支护边坡稳定性极限分析[J]. 岩土工程学报, 2021, 43(S1): 7-12. DOI: 10.11779/CJGE2021S1002
ZHU Yan-peng, HOU Xi-nan, MA Xiang-xiang, YANG Kui-bin. Limit analysis of slope stability supported by framed prestressed anchor rods[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 7-12. DOI: 10.11779/CJGE2021S1002
Citation: ZHU Yan-peng, HOU Xi-nan, MA Xiang-xiang, YANG Kui-bin. Limit analysis of slope stability supported by framed prestressed anchor rods[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 7-12. DOI: 10.11779/CJGE2021S1002

框架预应力锚杆支护边坡稳定性极限分析  English Version

基金项目: 

教育部长江学者和创新团队支持计划项目 IRT13068

教育部长江学者和创新团队支持计划项目 IRT_17R51

国家自然科学基金项目 51978321

详细信息
    作者简介:

    朱彦鹏(1960— ),男,硕士,教授,博士生导师,主要从事支挡结构、地基处理和工程事故处理与分析等方面的研究工作。E-mail:zhuyp1@163.com

    通讯作者:

    侯喜楠, E-mail:799178392@qq.com

  • 中图分类号: TU457

Limit analysis of slope stability supported by framed prestressed anchor rods

  • 摘要: 框架预应力锚杆在边坡工程中应用广泛。在考虑支护结构、锚杆对土体边坡稳定性影响的情况下,基于塑性力学极限分析上限理论的基本原理,推导了其支护边坡的安全系数计算公式。并采用Matlab语言编制算法对推导公式进行全局最优解搜索。对算例采用Flac3d模拟求解其安全系数,和用上限法求得的结果相近。最后采用正交试验设计方法讨论在框架预应力锚杆支护边坡中坡角、坡高、土体性质等内在因素对其稳定性的影响,得出对框架预应力锚杆支护边坡的稳定性影响最大的是坡角,然后再依次为内摩擦角和坡高、黏聚力、坡底支护结构推力设计值、重度,且坡角和内摩擦角对边坡稳定性影响高度显著。
    Abstract: Framed prestressed anchor rods are widely used in slope engineering.Considering the influences of supporting structures and anchor rods on the stability of soil slopes, the basic principles of the upper limit theory are analyzed, and the formula for calculating the safety factor of supported slope is deduced on the basis of plastic mechanics limit.The algorithm based on Matlab language is adopted to search the global optimal solution.Finally, according to the orthogonal design method, the influences of the internal factors such as slope angle, slope height and soil properties on the stability of prestressed anchor supported slope are discussed.It is concluded that the slope angle has the greatest influences on the stability of the prestressed anchor supported slope, following by the internal friction angle and slope hight, cohesion force, design value of thrust of supporting structures for the slope and soil weight, and the slope height, internal friction angle and slope angle have significant influences on its stability.
  • 图  1   框架预应力锚杆支护边坡模型图

    Figure  1.   Model for slope supported by framed prestressed anchor rods

    图  2   荷载等效示意图

    Figure  2.   Schematic diagram of equivalent load

    图  3   算例模型图

    Figure  3.   Model for case study

    图  4   Flac3D建模图

    Figure  4.   Flac3Dmodeling

    图  5   Flac3d模拟结果

    Figure  5.   Results of Flac3Dsimulation

    图  6   正交设计效应曲线图

    Figure  6.   Graph of orthogonal design effect

    表  1   不同极限平衡法所求的安全系数值

    Table  1   Values of safety factor calculated by different limit equilibrium methods

    JanbuMorgensternpriceSpencerBishopJanbu Generalized
    1.2701.3791.3781.3801.353
    下载: 导出CSV

    表  2   关于边坡黏聚力、内摩擦角等的因素水平

    Table  2   Factors related to slope cohesion, internal friction angle, soil weight, slope angle, slope height and design value of thrust of supporting structures for slope

    水平黏聚力/kPa内摩擦角/(°)重度/(kN·m-3)坡角/(°)坡高/m底部支护结构推力设计值/(kN·m-1)
    118201230610
    221231440830
    3242616501050
    4272918601270
    5303220701490
    下载: 导出CSV

    表  3   正交设计组合情况

    Table  3   Combined situations of orthogonal design

    试验号黏聚力/kPa内摩擦角/(°)重度/(kN·m-3)坡角/(°)坡高/m底部推力设计值/(kN·m-1)试验结果
    1182012306101.2240
    2182314408301.2250
    31826165010501.1517
    41829186012701.0310
    51832207014900.9062
    62120145012900.9322
    72123166014100.7520
    8212618706301.1593
    9212920308501.7832
    102132124010701.7141
    11232016708700.8876
    122323183010901.4269
    132326204012101.1765
    142329125014301.1735
    15233214606501.7726
    162720184014500.9716
    17272320506701.4204
    18272612608901.4562
    192729147010101.0271
    202732163012301.8385
    213020206010300.8457
    223023127012500.8671
    233026143014701.5460
    24302916406902.0201
    25303218508101.5728
    下载: 导出CSV

    表  4   正交设计结果

    Table  4   Values of orthogonal design

    因素K1K2K3K4K5R
    黏聚力1.10761.26821.28741.34281.37030.2628
    内摩擦角0.97221.13831.29791.4071.56080.5886
    重度1.2871.30061.331.23231.22640.1036
    坡角1.56371.42151.25011.17150.96950.5943
    坡高1.51931.3851.23311.16911.06990.4494
    底部推力设计值1.15051.24841.30921.31981.34830.1978
    下载: 导出CSV

    表  5   各个因素显著性分析

    Table  5   Significance analysis of various factors

    变异来源偏差平方和自由度方差FFa显著水平
    黏聚力0.21040.0535.177 显著
    内摩擦角1.04940.26225.864F0.01(4,4)=15.977极为显著
    坡角1.04840.26225.829F0.05(4,4)=6.388高度显著
    坡高0.63640.15915.674F0.1(4,4)=4.107显著
    推力设计值0.12340.0313.033F0.25(4,4)=2.064有一定影响
    误差e0.04140.010
    总和3.107     
    下载: 导出CSV
  • [1] 周勇, 朱彦鹏. 框架预应力锚杆边坡支护结构的稳定性分析方法及其应用[J]. 工程地质学报, 2008, 16(3): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200803016.htm

    ZHOU Yong, ZHU Yan-peng. Stability analysis method for prestressed anchor and grillage supporting structures and its application[J]. Journal of Engineering Geology, 2008, 16(3): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200803016.htm

    [2] 李忠, 朱彦鹏. 框架预应力锚杆边坡支护结构稳定性计算方法及其应用[J]. 岩石力学与工程学报, 2005, 24(21): 3922-3926. doi: 10.3321/j.issn:1000-6915.2005.21.018

    LI Zhong, ZHU Yan-peng, Stability calculation methodsforgrillagesupportingstructurewith prestressed anchor and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(21): 3922-3926. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.21.018

    [3] 龚晓南. 土塑性力学[M]. 杭州: 浙江大学出版社, 1990.

    GONG Xiao-nan. Soil Plastic Mechanics[M]. Hangzhou: Zhejiang University Press, 1990. (in Chinese)

    [4] 董倩, 刘东燕. 均质边坡稳定分析的上限解探讨[J]. 公路交通科技, 2007, 24(6): 8-11. doi: 10.3969/j.issn.1002-0268.2007.06.002

    DONG Qian, LIU Dong-yan. Discussionontheupper-boundsolutionof homogeneous soil slope stability[J]. Journal of Highway and Transportation Research and Development, 2007, 24(6): 8-11. (in Chinese) doi: 10.3969/j.issn.1002-0268.2007.06.002

    [5] 方薇, 杨果林, 刘晓红, 等. 非均质边坡稳定性极限分析上限法[J]. 中国铁道科学, 2010, 31(6): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006004.htm

    FANG Wei, YANG Guo-lin, LIU Xiao-hong, et al. The upper-bound limit analysis of the inhomogeneous slope stability[J]. China Railway Science, 2010, 31(6): 14-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006004.htm

    [6] 周强. 利用上限定理的二级边坡地震稳定性研究[J]. 公路工程, 2013, 38(2): 174-176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201302044.htm

    ZHOU Qiang. Slope with multi-step stability under earthquake forces based on limit analysis[J]. Highway Engineering, 2008, 38(2): 174-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201302044.htm

    [7] 李新坡, 何思明, 徐骏, 等. 预应力锚索加固土质边坡的稳定性极限分析[J]. 四川大学学报(工程科学版), 2006, 38(5): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200605012.htm

    LI Xin-po, HE Si-ming, XU Jun, et al. Stability analysis of slopes reinforced with pre-tensioned cables by limit analysis method[J]. Journal of Sichuan University(Engineering Science Edition), 2006, 38(5): 82-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200605012.htm

    [8] 王根龙, 伍法权, 祁生文, 等. 加锚岩质边坡稳定性评价的极限分析上限法研究[J]. 岩石力学与工程学报, 2007, 26(12): 2556-2563. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200712025.htm

    WANG Gen-long, WU Fa-quan, QI Sheng-wen, et al. Research on limit analysis upper bound method for stability evaluation of anchored rock slop[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2556-2563. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200712025.htm

    [9]

    BISHOP A W. The use of the slip circle in the stability analysis of slopes[J]. Géotechnique, 1955, 5(1): 7-17.

    [10]

    ZIENKIEWICZ O C, HUMPHESON C, LEWIS R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Géotechnique, 1975, 25(4): 671-689.

    [11]

    DUNCAN J M. State of the art: limit equilibrium and finite element analysis of slopes[J]. Journal of Geotechnical Engineering, 1996, 122(7): 577-596.

    [12] 郑颖人, 陈祖煜, 王恭先, 等. 边坡与滑坡工程治理[M]. 北京: 人民交通出版社, 2007.

    ZHENG Ying-ren, CHEN Zu-yu, WANG Gong-xian, et al. Slope and Landslide Engineering Treatment[M]. Beijing: China Communications Press, 2007. (in Chinese)

    [13]

    SOUBRA A H, MACUH B. Active and passive earth pressure coefficients by a kinematical approach[J]. Geotechnical Engineering, 2002, 155(2): 119-131.

    [14]

    CHEN W F. Limit Analysis and Soil Plasticity[M]. New York: Elsevier Scientific Publishing Co, 1975.

    [15] 陈祖煜. 土力学经典问题的极限分析上、下限解[J]. 岩土工程学报, 2002, 24(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200201000.htm

    CHEN Zu-yu. Limit analysis for the classic problems of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200201000.htm

    [16] 杨昕光, 周密, 张伟, 等. 基于二阶锥规划的边坡稳定上限有限元分析[J]. 长江科学院院报, 2016, 33(12): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201612013.htm

    YANG Xin-guang, ZHOU Mi, ZHANG Wei, et al. Upper bound finite element analysis of slope stability using second-order cone programming[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(12): 61-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201612013.htm

    [17] 赵炼恒, 罗强, 李亮, 等. 基于失稳状态耗能最小原理的预应力锚索加固边坡稳定性上限解析[J]. 岩土力学, 2013, 34(2): 426-432. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302020.htm

    ZHAO Lian-heng, LUO Qiang, LI Liang, et al. Energy analysis method for slopes reinforcing with prestressed anchor cables based on minimum energy principle of instability state[J]. Rock and Soil Mechanics, 2013, 34(2): 426-432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302020.htm

    [18] 夏世友, 张电吉, 夏亮, 等. 有限差分强度折减法求解边坡安全系数[J]. 武汉工程大学学报, 2012, 34(4): 19-21, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201204006.htm

    XIA Shi-you, ZHANG Dian-ji, XIA Liang, et al. Strength reduction finite difference method for solving safety factor of slope[J]. Journal of Wuhan Institute of Technology, 2012, 34(4): 19-21, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201204006.htm

    [19]

    LUAN Mao-tian, WU Ya-jun, NIAN Ting-kai. A criterion for evaluating slope stability based on development of plastic zone by shear strength reduction FEM[J]. Journal of Seismology, 2003, 23(3): 1-8.

图(6)  /  表(5)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  32
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回