• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

膨润土吸湿过程中膨胀力演化及水分分布特征

梁维云, 韦昌富, 张芹, 秦刘洋, 文松松, 颜荣涛

梁维云, 韦昌富, 张芹, 秦刘洋, 文松松, 颜荣涛. 膨润土吸湿过程中膨胀力演化及水分分布特征[J]. 岩土工程学报, 2023, 45(2): 283-291. DOI: 10.11779/CJGE20211496
引用本文: 梁维云, 韦昌富, 张芹, 秦刘洋, 文松松, 颜荣涛. 膨润土吸湿过程中膨胀力演化及水分分布特征[J]. 岩土工程学报, 2023, 45(2): 283-291. DOI: 10.11779/CJGE20211496
LIANG Weiyun, WEI Changfu, ZHANG Qin, QIN Liuyang, WEN Songsong, YAN Rongtao. Swelling pressure evolution and water distribution characteristics of bentonite during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 283-291. DOI: 10.11779/CJGE20211496
Citation: LIANG Weiyun, WEI Changfu, ZHANG Qin, QIN Liuyang, WEN Songsong, YAN Rongtao. Swelling pressure evolution and water distribution characteristics of bentonite during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 283-291. DOI: 10.11779/CJGE20211496

膨润土吸湿过程中膨胀力演化及水分分布特征  English Version

基金项目: 

国家自然科学基金项目 11962004

广西科技基地和人才专项项目 桂科AD20325010

广西岩土力学与工程重点实验室项目 桂科岩21-XT-3

河南省高等学校重点科研项目 23A560016

详细信息
    作者简介:

    梁维云(1990—),男,博士,讲师,主要从事土体化学-力学耦合特性方面的研究工作。E-mail:lwyxy2013@163.com

    通讯作者:

    韦昌富, E-mail:cfwei@whrsm.ac.cn

  • 中图分类号: TU443

Swelling pressure evolution and water distribution characteristics of bentonite during wetting process

  • 摘要: 压实膨润土被广泛地用作密封阻隔材料,其膨胀力变化对于工程设计十分重要。采用蒸汽平衡法控制吸力,研究增湿过程中的膨胀力变化规律,并采用核磁共振(NMR)和X射线衍射(XRD)技术,分析吸湿过程中土体水分分布状态与宏观膨胀行为的关联机制。结果表明,在控制湿度条件下,随着吸力降低,膨胀力先线性增加后稍稍降低;当吸力超过21.8 MPa后,不同干密度试样的含水率基本一致,在低吸力段,含水率随干密度降低而增加;吸湿过程中膨润土矿物晶层间逐层吸水,形成不超过2层水分子厚度吸附水;利用T2分布曲线计算了不同干密度试样的吸附水和毛细水含量,发现膨润土中主要为吸附水,存在少量毛细水(< 5%)。分析认为,在吸湿过程中,水分首先吸附到层间区域,膨胀力线性增加,当形成少量毛细水后,颗粒滑移导致膨胀力降低。即,膨胀力的演化在高吸力下受层间水合作用控制,在低吸力下受孔隙结构变化影响。
    Abstract: The compacted bentonite is widely used as the sealing barrier material, and its swelling pressure is regarded as an important design index. A device based on vapor equilibrium technique is designed for measuring the swelling pressure of expansive soils in unsaturated environment. The nuclear magnetic resonance (NMR) and X-ray diffraction (XRD) techniques are used to analyze the correlation mechanism between water distribution and macroscopic swelling behaviors of the bentonite during wetting process. The test results show that under the relative humidity control, with the decrease of the suction, the swelling pressure first increases linearly and then decreases slightly. When the suction exceeds 21.8 MPa, the water content of the samples with different dry densities is basically the same. In the low suction range, the water content increases with the decrease of the dry density. During the wetting process, the interlayers of the bentonite absorb water layer by layer, forming no more than two layers of adsorbed water. According to the wetting curves with different dry densities, the contents of the adsorbed and capillary water are calculated using the T2 distribution curve. It is found that there is mainly the adsorbed water in the bentonite, with a small amount of capillary water (< 5%). The analysis shows that water is first adsorbed to the interlayer region, and the swelling pressure increases linearly. When a small amount of the capillary water is formed, particle slip leads to a decrease in the swelling pressure. Therefore, the swelling pressure evolution during the wetting process is controlled by interlayer hydration under high suction and affected by changes in pore structure under low suction.
  • 图  1   蒸汽平衡法测量膨胀力的试验装置

    Figure  1.   Schematic diagram of swelling pressure test devices by vapor equilibrium technique

    图  2   膨胀力随RH变化的时程曲线

    Figure  2.   Time-swelling pressure curves with increase of relative humidity

    图  3   膨胀力与吸力的关系

    Figure  3.   Relationship between swelling pressure and suction

    图  4   含水率随吸力变化关系曲线

    Figure  4.   Relationship between suction and water content

    图  5   不同干密度试样在不同吸力下的T2分布曲线

    Figure  5.   T2 distribution curves under different suctions and dry densities

    图  6   峰面积与含水率的关系

    Figure  6.   Relationship between peak area and water content

    图  7   干燥膨润土粉末水化后的XRD图谱

    Figure  7.   XRD patterns of dried bentonite powder after hydration

    图  8   膨润土粉末吸湿过程中d(001)的变化

    Figure  8.   Change of d(001) during water absorption of bentonite powder

    图  9   吸湿过程中的吸附水和毛细水含水率

    Figure  9.   Contents of adsorbed and capillary water during wetting process

    图  10   吸湿过程中微观孔隙演化

    Figure  10.   Pore evolution during wetting process

    表  1   试验土样的矿物成分和基本物性指标

    Table  1   Mineral compositions and fundamental physical indices of test clay

    相对质量密度 液限/% 塑限/% CEC/(mmol·kg-1) 总比表面积/(m2·g-1) 矿物成分/%
    蒙脱石 长石 石英 石膏
    2.70 310.0 29.0 729 682.3 77 11 7 5
    注:取下沉深度为17 mm所对应的含水率为液限。
    下载: 导出CSV

    表  2   20℃下饱和盐溶液的相对湿度与对应吸力值

    Table  2   Relative humidities and corresponding suctions of saturated salt solution at 20℃

    序号 饱和盐溶液 RH/% 吸力/MPa
    1 LiCl 12.0 286.3
    2 CH3COOK 23.1 197.9
    3 MgCl2·6H2O 33.1 149.3
    4 K2CO3 43.2 113.3
    5 NaBr 59.1 71.0
    6 NaCl 75.5 37.9
    7 KCl 85.1 21.8
    8 Na2SO4 93.0 9.8
    9 K2SO4 97.6 3.3
    下载: 导出CSV
  • [1] 王驹, 徐国庆, 郑华铃, 等. 中国高放废物地质处置研究进展: 1985—2004[J]. 世界核地质科学, 2005, 22(1): 5-16. doi: 10.3969/j.issn.1672-0636.2005.01.002

    WANG Ju, XU Guoqing, ZHENG Hualing, et al. Geological disposal of high level radioactive waste in China: progress during 1985-2004[J]. World Nuclear Geoscience, 2005, 22(1): 5-16. (in Chinese) doi: 10.3969/j.issn.1672-0636.2005.01.002

    [2] 陈正汉, 秦冰. 缓冲/回填材料的热-水-力耦合特性及其应用[M]. 北京: 科学出版社, 2017.

    CHEN Zhenghan, QIN Bing. Thermal-Water-Mechanical Coupling Characteristics of Buffer/Backfill Materials and its Application[M]. Beijing: Science Press, 2017. (in Chinese)

    [3] 谈云志, 胡新江, 喻波, 等. 压实红黏土的恒体积膨胀力与细观机制研究[J]. 岩土力学, 2014, 35(3): 653-658. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403008.htm

    TAN Yunzhi, HU Xinjiang, YU Bo, et al. Swelling pressure and mesomechanism of compacted laterite under constant volume condition[J]. Rock and Soil Mechanics, 2014, 35(3): 653-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403008.htm

    [4] 卢肇钧, 吴肖茗, 孙玉珍, 等. 膨胀力在非饱和土强度理论中的作用[J]. 岩土工程学报, 1997, 19(5): 20-27. doi: 10.3321/j.issn:1000-4548.1997.05.004

    LU Zhaojun, WU Xiaoming, SUN Yuzhen, et al. The role of swelling pressure in the shear strength theory of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 20-27. (in Chinese) doi: 10.3321/j.issn:1000-4548.1997.05.004

    [5] 秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土GMZ001三向膨胀力特性研究[J]. 岩土工程学报, 2009, 31(5): 756-763. doi: 10.3321/j.issn:1000-4548.2009.05.019

    QIN Bing, CHEN Zhenghan, LIU Yuemiao, et al. Characteristics of 3D swelling pressure of GMZ001 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 756-763. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.05.019

    [6] 文松松, 梁维云, 陈永健, 等. 弱膨胀土的膨胀特性试验研究[J]. 工程地质学报, 2017, 25(3): 706-714. doi: 10.13544/j.cnki.jeg.2017.03.017

    WEN Songsong, LIANG Weiyun, CHEN Yongjian, et al. Experimental study of swelling characteristics of weak expansive soil[J]. Journal of Engineering Geology, 2017, 25(3): 706-714. (in Chinese) doi: 10.13544/j.cnki.jeg.2017.03.017

    [7] 丁振洲, 郑颖人, 李利晟. 膨胀力变化规律试验研究[J]. 岩土力学, 2007, 28(7): 1328-1332. doi: 10.3969/j.issn.1000-7598.2007.07.008

    DING Zhenzhou, ZHENG Yingren, LI Lisheng. Trial study on variation regularity of swelling force[J]. Rock and Soil Mechanics, 2007, 28(7): 1328-1332. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.07.008

    [8] 何芳婵, 李宗坤. 南水北调南阳段弱膨胀土增湿膨胀与力学特性试验研究[J]. 岩土力学, 2013, 34(增刊2): 190-194, 203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2032.htm

    HE Fangchan, LI Zongkun. Experimental study of wetting expansibility and mechanical properties of weak expansive soil in Nanyang section of South-to-North Water Diversion Project[J]. Rock and Soil Mechanics, 2013, 34(S2): 190-194, 203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2032.htm

    [9]

    LLORET A, VILLAR M V, SÁNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27-40. doi: 10.1680/geot.2003.53.1.27

    [10]

    ROMERO E, GENS A, LLORET A. Suction effects on a compacted clay under non-isothermal conditions[J]. Géotechnique, 2003, 53(1): 65-81. doi: 10.1680/geot.2003.53.1.65

    [11]

    AGUS S S, ARIFIN Y F, TRIPATHY S, et al. Swelling pressure–suction relationship of heavily compacted bentonite–sand mixtures[J]. Acta Geotechnica, 2013, 8(2): 155-165. doi: 10.1007/s11440-012-0189-0

    [12]

    SCHANZ T, AL-BADRAN Y. Swelling pressure characteristics of compacted Chinese Gaomiaozi bentonite GMZ01[J]. Soils and Foundations, 2014, 54(4): 748-759. doi: 10.1016/j.sandf.2014.06.026

    [13]

    YIGZAW Z G, CUISINIER O, MASSAT L, et al. Role of different suction components on swelling behavior of compacted bentonites[J]. Applied Clay Science, 2016, 120: 81-90. doi: 10.1016/j.clay.2015.11.022

    [14]

    ZHANG Z, YE W M, LIU Z R, et al. Mechanical behavior of GMZ bentonite pellet mixtures over a wide suction range[J]. Engineering Geology, 2020, 264: 105383. doi: 10.1016/j.enggeo.2019.105383

    [15]

    DELAGE P, MARCIAL D, CUI Y J, et al. Ageing effects in a compacted bentonite: a microstructure approach[J]. Géotechnique, 2006, 56(5): 291-304. doi: 10.1680/geot.2006.56.5.291

    [16]

    SAIYOURI N, TESSIER D, HICHER P Y. Experimental study of swelling in unsaturated compacted clays[J]. Clay Minerals, 2004, 39(4): 469-479. doi: 10.1180/0009855043940148

    [17]

    LIKOS W J, WAYLLACE A. Porosity evolution of free and confined bentonites during interlayer hydration[J]. Clays and Clay Minerals, 2010, 58(3): 399-414. doi: 10.1346/CCMN.2010.0580310

    [18]

    VILLAR M V, GÓMEZ-ESPINA R, GUTIÉRREZ-NEBOT L. Basal spacings of smectite in compacted bentonite[J]. Applied Clay Science, 2012, 65/66: 95-105. doi: 10.1016/j.clay.2012.05.010

    [19]

    HOLMBOE M, WOLD S, JONSSON M. Porosity investigation of compacted bentonite using XRD profile modeling[J]. Journal of Contaminant Hydrology, 2012, 128(1/2/3/4): 19-32.

    [20] 田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm

    TIAN Huihui, WEI Changfu. A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica (Technologica), 2014, 44(3): 295-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm

    [21] 叶万军, 吴云涛, 杨更社, 等. 干湿循环作用下古土壤细微观结构及宏观力学性能变化规律研究[J]. 岩石力学与工程学报, 2019, 38(10): 2126-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm

    YE Wanjun, WU Yuntao, YANG Gengshe, et al. Study on microstructure and macro-mechanical properties of paleosol under dry-wet cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2126-2137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm

    [22] 安然, 孔令伟, 黎澄生, 等. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J]. 岩石力学与工程学报, 2020, 39(9): 1902-1911. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm

    AN Ran, KONG Lingwei, LI Chengsheng, et al. Strength attenuation and microstructure damage of granite residual soils under hot and rainy weather[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9): 1902-1911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009017.htm

    [23]

    MA T T, WEI C F, YAO C Q, et al. Microstructural evolution of expansive clay during drying–wetting cycle[J]. Acta Geotechnica, 2020, 15(8): 2355-2366. doi: 10.1007/s11440-020-00938-4

    [24]

    ASTM. Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils[S]. ASTM D7503-10, 2010.

    [25] 张云龙, 项伟, 黄伟, 等. 钠基蒙脱土水合演化机制[J]. 岩土力学, 2019, 40(11): 4391-4400. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911030.htm

    ZHANG Yunlong, XIANG Wei, HUANG Wei, et al. Hydration evolution mechanism of sodium montmorillonite[J]. Rock and Soil Mechanics, 2019, 40(11): 4391-4400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911030.htm

    [26] 叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. doi: 10.11779/CJGE202001003

    YE Weimin, LIU Zhangrong, CUI Yujun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) doi: 10.11779/CJGE202001003

    [27]

    WANG Q, TANG A M, CUI Y J, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite-sand mixture[J]. Soils and Foundations, 2013, 53(2): 232-245.

    [28]

    SALAGER S, NUTH M, FERRARI A, et al. Investigation into water retention behaviour of deformable soils[J]. Canadian Geotechnical Journal, 2013, 50(2): 200-208.

    [29]

    LIANG W Y, YAN R T, XU Y F, et al. Swelling pressure of compacted expansive soil over a wide suction range[J]. Applied Clay Science, 2021, 203: 106018.

    [30]

    TIAN H H, WEI C F. Characterization and quantification of pore water in clays during drying process with low-field NMR[J]. Water Resources Research, 2020, 56(10): e2020WR027537.

    [31]

    MORODOME S, KAWAMURA K. Swelling behavior of Na- and Ca-montmorillonite up to 150℃ by in situ X-Ray diffraction experiments[J]. Clays and Clay Minerals, 2009, 57(2): 150-160.

    [32]

    LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(10): 04016051.

    [33] 陈正汉. 非饱和土与特殊土力学: 理论创新、科研方法及治学感悟[M]. 北京: 科学出版社, 2021.

    CHEN Zhenghan. Unsaturated Soil and Special Soil Mechanics: Theoretical Innovation, Scientific Research Methods and Research Insights[M]. Beijing: Science Press, 2021. (in Chinese)

    [34]

    PUSCH R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19(3): 381-387.

    [35]

    DIEUDONNÉ A, VECCHIA G D, CHARLIER R. A water retention model for compacted bentonites[J]. Canadian Geotechnical Journal, 2017, 54(7): 915-925.

  • 其他相关附件

图(10)  /  表(2)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  49
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回