• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾尾刷环形密封系统单元试验及水密性机制研究

钟小春, 莫暖娇, 余明学, 竺维彬, 朱能文, 游智

钟小春, 莫暖娇, 余明学, 竺维彬, 朱能文, 游智. 盾尾刷环形密封系统单元试验及水密性机制研究[J]. 岩土工程学报, 2023, 45(2): 354-361. DOI: 10.11779/CJGE20211464
引用本文: 钟小春, 莫暖娇, 余明学, 竺维彬, 朱能文, 游智. 盾尾刷环形密封系统单元试验及水密性机制研究[J]. 岩土工程学报, 2023, 45(2): 354-361. DOI: 10.11779/CJGE20211464
ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, ZHU Weibin, ZHU Nengwen, YOU Zhi. Unit tests on shield tail brush annular sealing system and its watertightness mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 354-361. DOI: 10.11779/CJGE20211464
Citation: ZHONG Xiaochun, MO Nuanjiao, YU Mingxue, ZHU Weibin, ZHU Nengwen, YOU Zhi. Unit tests on shield tail brush annular sealing system and its watertightness mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 354-361. DOI: 10.11779/CJGE20211464

盾尾刷环形密封系统单元试验及水密性机制研究  English Version

基金项目: 

国家自然科学基金项目 52178387

详细信息
    作者简介:

    钟小春(1976—),男,博士,副教授,主要从事盾构技术研究与教学工作。E-mail:58206947@qq.com

    通讯作者:

    余明学,E-mail:309819821@qq.com

  • 中图分类号: TU443

Unit tests on shield tail brush annular sealing system and its watertightness mechanism

  • 摘要: 盾构法已经成为了城市地铁隧道建设的主流施工法,由于盾尾刷密封效果不佳导致的漏水、漏浆等重大安全责任事故屡屡发生。通过建立盾尾刷-油脂腔密封系统密封单元试验装置,探讨油脂稠度、油脂压力、盾尾间隙对其水密性能的影响。试验结果表明:①根据油脂锥入度不同,盾尾密封渗漏出现两种模式:锥入度低时渗漏物为外界泥水,锥入度高时渗漏物为外界泥水与油脂混合物。为提高盾尾密封性能,油脂锥入应控制180~200(1/10 mm)范围内。②盾尾渗漏临界压力可由油脂压力、贴合力确定,略微小于油脂压力,因此工程中设定油脂压力比盾尾空隙中泥水或注浆浆液压力大0.5 MPa是合理的。③盾尾渗漏临界压力受油脂压力影响更大些,但盾尾刷贴合力则影响油脂逃逸和油脂压力的稳定,因此盾构掘进过程中加强盾尾刷和密封系统的管理以避免砂浆侵入导致盾尾刷失去弹性引起的密封失效。研究成果可为盾尾密封系统的设计和施工管理提供参考。
    Abstract: The shield tunnelling method has become the mainstream construction one for urban subway tunnels. Due to the poor sealing effects of shield tail brushes, many severe safety accidents such as water and slurry leakage occur frequently. The influences of grease consistency, grease pressure and shield tail clearance on the watertightness performance are discussed by setting up the sealing unit test devices for the shield tail brush-grease chamber. The test results show that: (1) According to the different grease cone penetrations, there are two modes of shield tail sealing leakage. One is that the leakage material is the external slurry at low cone penetration, and the other is that the leakage material is the external slurry and grease mixture at high cone penetration. In order to improve the shield tail sealing performance, the grease cone penetration should be controlled within the range of 180~200 (1/10 mm). (2) The critical leakage pressure of the shield tail can be determined by the grease pressure and adhesion force, which is slightly smaller than the grease pressure. Therefore, it is reasonable to set the grease pressure 0.5 MPa higher than the slurry pressure in shield tail clearance during shield tunneling. (3) The critical leakage pressure of the shield tail is more affected by the grease pressure, but the adhesion force of the shield tail brush affects the grease escape and grease pressure stability. Hence, the management of the shield tail brush and sealing system during shield tunnelling should be strengthened to avoid the tail sealing failure, which is caused by the loss of elasticity of the shield tail brush due to mortar intrusion. The research results may provide reference for the design and construction management of the shield tail sealing system.
  • 图  1   盾尾密封系统渗漏试验装置示意图

    Figure  1.   Schematic diagram of leakage test devices for shield tail sealing system

    图  2   盾尾刷-油脂腔密封单元试验装置

    Figure  2.   Sealing unit test devices for shield tail brush-grease chamber

    图  3   密封油脂注入系统

    Figure  3.   Injection system of sealing grease

    图  4   盾尾刷单元体试验密封方式

    Figure  4.   Sealing methods for shield tail brush unit tests

    图  5   盾尾密封击穿类型

    Figure  5.   Breakdown types of shield tail sealing

    图  6   不同锥入度油脂对水的渗漏速率的影响

    Figure  6.   Influences of different greases on water leakage rate

    图  7   不同油脂压力状态下水的渗漏速率

    Figure  7.   Water leakage rates under different grease pressures

    图  8   不同水压状态下水的渗漏速率

    Figure  8.   Water leakage rates under different water pressures

    图  9   不同盾尾间隙下的临界渗漏压力

    Figure  9.   Critical leakage forces under different shield tail clearances

    图  10   盾尾密封受力计算模型

    Figure  10.   Force model for performance of shield tail sealing

    图  11   Kcr值随盾尾间隙变化规律

    Figure  11.   Variation of Kcr value with shield tail clearance

    图  12   Kcr值随油脂锥入度变化规律

    Figure  12.   Variation of Kcr value with greace cone penetration

    图  13   K1取值与盾尾间隙D的关系

    Figure  13.   Relationship between K1 and shield tail clearance D

    图  14   K2取值与盾尾间隙D的关系

    Figure  14.   Relationship between K2 and shield tail clearance D

    图  15   临界渗漏压力与盾尾间隙、油脂压力关系(油脂C)

    Figure  15.   Relationship among critical leakage pressure, shield tail clearance and grease pressure (Grease C)

    图  16   砂浆侵入盾尾刷引起密封失效

    Figure  16.   Sealing failure caused by mortar intrusion into shield tail brush

    表  1   3种盾尾油脂的性质

    Table  1   Properties of three kinds of shield tail grease

    油脂类型 油脂锥入度(0.1 mm) 油脂稠度等级
    油脂A 175.2 #4
    油脂B 203.5 #4
    油脂C 220.0 #3
    下载: 导出CSV

    表  2   不同油脂压力下渗漏临界水压(油脂C)

    Table  2   Critical leakage pressures under different grease pressures (Grease C)

    序号 油脂压力/MPa 临界水压/MPa
    1 0.2 0.18
    2 0.3 0.27
    3 0.4 0.35
    4 0.5 0.47
    下载: 导出CSV
  • [1] 杨梅. 盾构机盾尾刷设计及更换技术研究[J]. 铁道建筑技术, 2021(9): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS202109014.htm

    YANG Mei. Research on design and replacement technology of shield tail brush of shield machine[J]. Railway Construction Technology, 2021(9): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS202109014.htm

    [2] 朱伟, 陈仁俊. 盾构隧道施工技术现状及展望(第3讲): 盾构隧道应用前景及发展方向[J]. 岩土工程界, 2002(1): 18-20, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200201037.htm

    ZHU Wei, CHEN Renjun. Present situation and prospect of shield tunnel construction technology (Lecture 3)-Application prospect and development direction of shield tunnel[J]. Geological Exploration for Non-Ferrous Metals, 2002(1): 18-20, 52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200201037.htm

    [3] 白云, 丁志诚, 刘千伟. 隧道掘进机施工技术[M]. 2版. 北京: 中国建筑工业出版社, 2013.

    BAI Yun, DING Zhicheng, LIU Qianwei. Tunnel Boring Machine Construction Technology[M]. 2nd ed. Beijing: China Architecture & Building Press, 2013. (in Chinese)

    [4]

    WU B, DENG Z, HUANG W. Risk assessment of water penetration for shield tunnel construction in coastal area[J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(4): 042116. doi: 10.1088/1755-1315/267/4/042116

    [5] 黄宏伟, 朱琳, 谢雄耀. 上海地铁11号线关键节点工可阶段工程风险评估[J]. 岩土工程学报, 2007, 29(7): 1103-1107. doi: 10.3321/j.issn:1000-4548.2007.07.024

    HUANG Hongwei, ZHU Lin, XIE Xiongyao. Risk assessment on engineering feasibility of key events in Shanghai metro line No. 11[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1103-1107. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.024

    [6] 李艳春. 盾构法隧道施工中盾尾刷的优化与保护[J]. 湖南城市学院学报(自然科学版), 2015, 24(3): 33-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCG201503012.htm

    LI Yanchun. Shield tunneling optimization and protection shield tail brush[J]. Journal of Hunan City University (Natural Science), 2015, 24(3): 33-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNCG201503012.htm

    [7] 郑刚, 崔涛, 程雪松, 等. 某地铁区间盾构法施工隧道事故实例与分析[J]. 岩土工程学报, 2017, 39(增刊2): 132-135. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17195.shtml

    ZHENG Gang, CUI Tao, CHENG Xuesong, et al. Introduction and analysis of an accident in a shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 132-135. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17195.shtml

    [8] 程鹏飞, 李嘉骏. 成都富水砂卵地层中盾尾漏水漏浆的控制及处理措施[J]. 居业, 2020, 12(2): 103-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCZ202002058.htm

    CHENG Pengfei, LI Jiajun. Control and treatment measures of water leakage and slurry leakage at shield tail in Chengdu water-rich sand-egg stratum[J]. Create Living, 2020, 12(2): 103-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJCZ202002058.htm

    [9] 胡家亮, 杨彩香, 王颖. 广东佛山地铁二号线岩土工程勘察分析[J]. 矿产勘查, 2019, 10(12): 3016-3022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201912019.htm

    HU Jialiang, YANG Caixiang, WANG Ying. Investigation and analysis on geotechnical engineering of Foshan Metro Line 2, Guangdong[J]. Mineral Exploration, 2019, 10(12): 3016-3022. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201912019.htm

    [10]

    YU C, ZHOU A N, CHEN J, et al. Analysis of a tunnel failure caused by leakage of the shield tail seal system[J]. Underground Space, 2020, 5(2): 105-114.

    [11] 任广艳. 透水涌砂冒险堵漏隧道坍塌撤人不及: 广东省佛山市轨道交通2号线"2.7"透水坍塌重大事故分析[J]. 吉林劳动保护, 2019(8): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JLLB201908017.htm

    REN Guangyan. Water-permeable sand flooding risks plugging tunnel collapse, and people can't escape—analysis of "2.7" water-permeable collapse of Foshan Rail Transit Line 2 in Guangdong Province[J]. Jilin Labour Protection, 2019(8): 40-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLLB201908017.htm

    [12] 夏清华. 盾构施工盾尾密封渗漏风险源分析及应对策略[J]. 中外建筑, 2019(1): 200-201. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJC201901058.htm

    XIA Qinghua. Risk source analysis and countermeasures for leakage of shield seal of shield construction[J]. Chinese & Overseas Architecture, 2019(1): 200-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJC201901058.htm

    [13]

    LI G, WANG N. Sealing performance of shield tail sealing system based on multiphase flow numerical simulation[J]. Tunnel Construction, 2021, 41(S1): 490-496.

    [14] 高振峰. 高水压下盾尾密封油脂耐水压密封性评价及影响因素研究[D]. 北京: 北京交通大学, 2019.

    GAO Zhenfeng. Evaluation of Water-Tightness of Shield Tail Grease under High Water Pressure and Its Influencing Factors Analysis[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)

    [15] 廖少明, 余炎, 程致高. 盾尾密封对盾构周边渗流场及正面稳定的影响[J]. 同济大学学报(自然科学版), 2008, 36(2): 172-177, 192. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200802007.htm

    LIAO Shaoming, YU Yan, CHENG Zhigao. Effect of shield sealing on stability of workface and seepage field around shield[J]. Journal of Tongji University (Natural Science), 2008, 36(2): 172-177, 192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200802007.htm

    [16] 饶竹红, 刘建国. 盾尾密封油脂水密性测试设备数值模拟分析[J]. 隧道与轨道交通, 2017(S1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC2017S1010.htm

    RAO Zhuhong, LIU Jianguo. Numerical simulation analysis of water tightness test equipment for tail seal grease[J]. Tunnels and Rail Transit, 2017(S1): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC2017S1010.htm

    [17] 钟波, 张光辉, 魏林春. 盾构盾尾金属刷有限元分析[J]. 建材世界, 2018, 39(3): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJK201803022.htm

    ZHONG Bo, ZHANG Guanghui, WEI Linchun. Finite element analysis of shield tail metal brush[J]. The World of Building Materials, 2018, 39(3): 79-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJK201803022.htm

    [18] 钭婧. 盾构机盾尾密封系统压力分布特性研究[D]. 大连: 大连理工大学, 2021.

    TOU Jing. Study on Pressure Distribution Characteristics of Shield Tail Sealing System of Shield Machine[D]. Dalian: Dalian University of Technology, 2021. (in Chinese)

    [19] 王德乾, 宋世雄, 程晋国, 等. 盾尾密封油脂泵送性测试仪器、测试方法与评价标准研究[J]. 隧道建设, 2017, 37(3): 303-306. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201703009.htm

    WANG Deqian, SONG Shixiong, CHENG Jinguo, et al. Study of test devices, methods and evaluation criteria for pumpability of shield tail sealing grease[J]. Tunnel Construction, 2017, 37(3): 303-306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201703009.htm

    [20]

    ZHANG J, WANG Y W, WANG J M, et al. Primary research on preparation and properties of shield tail sealing grease[C]// Proceedings of the 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017). Zhuhai, 2017.

    [21] 润滑脂和石油脂锥入度测定法: GB/T 269—1991[S]. 北京: 中国标准出版社, 1991.

    Lubricating Grease and Petrolatum— Determination of Cone Penetration: GB/T 269—1991[S]. Beijing: Standards Press of China, 1991. (in Chinese)

    [22] 孙金鑫. 盾尾刷密封系统油脂逃逸研究[D]. 南京: 河海大学, 2020.

    SUN Jinxin. Study on Grease Escape of Shield Tail Brush Sealing System[D]. Nanjing: Hohai University, 2020. (in Chinese)

  • 期刊类型引用(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 . 百度学术
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 . 百度学术
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 . 百度学术
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 . 百度学术
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 . 百度学术
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 . 百度学术
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 . 百度学术
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 . 百度学术
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    其他类型引用(14)

图(16)  /  表(2)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  56
  • PDF下载量:  49
  • 被引次数: 23
出版历程
  • 收稿日期:  2021-12-08
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回