• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

菌丝复合轻质土的制备及力学特性研究

苟乐宇, 刘西周, 李飒, 尹蒋松, 李婷婷, 刘鑫

苟乐宇, 刘西周, 李飒, 尹蒋松, 李婷婷, 刘鑫. 菌丝复合轻质土的制备及力学特性研究[J]. 岩土工程学报, 2021, 43(10): 1933-1940. DOI: 10.11779/CJGE202110020
引用本文: 苟乐宇, 刘西周, 李飒, 尹蒋松, 李婷婷, 刘鑫. 菌丝复合轻质土的制备及力学特性研究[J]. 岩土工程学报, 2021, 43(10): 1933-1940. DOI: 10.11779/CJGE202110020
GOU Le-yu, LIU Xi-zhou, LI Sa, YIN Jiang-song, LI Ting-ting, LIU Xin. Preparation and mechanical properties of composite mycelial lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1933-1940. DOI: 10.11779/CJGE202110020
Citation: GOU Le-yu, LIU Xi-zhou, LI Sa, YIN Jiang-song, LI Ting-ting, LIU Xin. Preparation and mechanical properties of composite mycelial lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1933-1940. DOI: 10.11779/CJGE202110020

菌丝复合轻质土的制备及力学特性研究  English Version

基金项目: 

国家自然科学基金面上项目 42072294

详细信息
    作者简介:

    苟乐宇(1992— ),男,博士研究生,主要从事岩土工程方面的研究工作。E-mail:gly.p.m.a@gmail.com

    通讯作者:

    李飒, E-mail:lisa@tju.edu.cn

  • 中图分类号: TU431

Preparation and mechanical properties of composite mycelial lightweight soil

  • 摘要: 利用真菌天然生长得到了一种新型轻质土工填料。通过无侧限抗压强度、渗透试验、电镜扫描、CT扫描试验研究了菌丝复合轻质土工填料的物理力学与细观特性。研究发现:菌丝复合轻质土是一种利用菌丝定殖、黏结和缠绕基质材料后形成的多孔、轻质回填材料;菌丝的定殖程度对菌丝复合轻质土的强度有着重要的影响。菌丝复合轻质土的渗透系数接近粉质黏土,渗透性随骨料含量的添加而降低,但降低速率与菌丝定殖程度有关。骨料的添加提高了菌丝复合轻质土的强度,且菌丝的定殖程度越高,骨料对强度的提升作用越明显。添加骨料的菌丝复合轻质土满足回填材料的强度要求,表现出较好的韧性,峰值强度与残余强度的比值稳定在1.15~1.22。建立的菌丝复合轻质土抗压强度与骨料含量的函数表达式可以较好的预测抗压强度。菌丝复合轻质土的生产工艺简单,能耗低且无环境污染,有望成为新型的轻质回填材料。
    Abstract: A new type of lightweight backfill material is obtained by the natural growth of fungi. The unconfined compressive strength tests, permeability tests, scanning of electron microscope, and CT scanning tests are conducted to study the physico-mechanical and micro properties of composite mycelial lightweight soil (MLS). The results show that the MLS is a kind of porous and lightweight backfill material, formed by mycelium winding around the substrate filler materials. The colonization degree of mycelium has an important influence on its compressive strength. The permeability coefficient of the MLS is close to that of the silty clay. The permeability decreases with the addition of aggregate content, but the decreasing rate is related to the degree of mycelial colonization. The addition of aggregate improves the strength of the MLS. The higher the degree of the mycelial colonization, the more notable the increase in the compressive strength under the same aggregate content. The ratio of the peak strength to the residual strength is between 1.15 and 1.22. An exponential function equation is established between the compressive strength and the aggregate content. The MLS has the advantages of simple production process, low energy consumption and no environmental pollution, and is expected to become a new type of lightweight backfill material.
  • 为了解决沿海地区能源需求缺口问题并减少对石化能源的依赖,海上风电作为一种清洁可再生资源已经成为新能源领域发展的重点。中国近海风能资源丰富,根据国家能源局发展规划,中国“十三五”期间风电开工建设规模达到千万千瓦。目前,嘉兴在建的300兆瓦嘉兴1号海上风电场是杭州湾平湖海域大型海上风电场。风场中心点离岸约20 km,工程海域水深8~12 m,海底滩地表层主要为淤泥,软土地基厚达40 m。在风机设备自重荷载及风浪、机器振动引起的循环荷载的作用下,海洋软黏土易发生孔压累积、变形发展和刚度弱化,进而引起风机基础性能劣化或失稳。因此,海洋结构物基础设计需对静动荷载作用下海底饱和软黏土刚度弱化特性进行更为深入的研究。

    小应变剪切模量是土的基本力学参数,在室内土工试验中通常可由共振柱试验或弯曲元试验进行量测。使用弯曲元测量土体小应变剪切模量时可与三轴试验系统联合测试,试验原理明确,操作方法简单,获得了较多应用[1-2]。早期研究表明,土体小应变剪切模量与其孔隙比、有效应力和超固结比有关,这些影响因素可通过Hardin公式描述[3]。对于静动荷载作用下的土体,不排水静动加载历史对小应变剪切模量的影响除了反映在有效应力的改变之外,还需考虑土体结构的损伤演化。周燕国等[4]和谷川等[5]分别在饱和砂土和软土中发现了小应变剪切模量在大幅值动力荷载作用下减小的现象。与小应变剪切模量不同,土作为强非线性材料,其在中到大应变下的塑性模量将发生衰减。研究表明,影响土体刚度弱化特性的因素包括超固结比、非等向固结、加载幅值、主应力轴旋转等[6-7]。为了在海洋基础设计中考虑海床的循环弱化效应,建立软弱土循环弱化的表征模型甚为关键。Idriss等[8]通过分析动模量衰减规律提出了软化指数的概念,并将其与循环振次建立关联。基于软化指数的刚度弱化模型得到了研究者的广泛采用,王军等[9]、黄茂松等[10]、郭小青等[11]分析了国内不同区域的典型软黏土循环弱化特性与振次的关系。应当指出的是,小应变剪切模量和塑性模量作为土体结构响应的宏观表征,应进一步研究二者间相互关系,而以往研究多针对其中的单一对象开展。

    本文开展了一系列不排水静动三轴试验,在单调和循环剪切不同阶段进行剪切波速量测,研究了正常固结海洋软黏土的小应变剪切模量和刚度弱化特性。本文研究成果揭示了静动加载历史对原状软黏土刚度特性的影响规律,通过建立小应变剪切模量与动模量的关系,为复杂应力条件下土体力学特性分析提供了新的途径,可应用于工程荷载作用下场地软土刚度弱化特性的评价。

    本文试验所用原状软黏土取自嘉兴1号海上风电场工程所处海域,取样深度18~21 m,液限42%,塑性指数23。主要物性参数:相对密度Gs=2.66,含水率w=45~48%,孔隙比e=1.20~1.28,黏粒含量=49%,粉粒含量=50%。试验时,对原状薄壁土样切取直径为50 mm,高度为100 mm的圆柱体试样。试验采用GDS土体多功能三轴试验系统,该系统可实现固结、单调及循环荷载等多种加载模式。将制备的试样装入三轴压力室进行反压饱和并检查B值,均达到0.95以上,满足饱和度要求。

    对制备的饱和软黏土试样等向固结至初始有效围压p0=50~400 kPa。一维压缩试验表明本文土样的先期固结应力约为35 kPa,因此试样均处于正常固结状态。固结完成后分别在不排水条件下进行单调和循环三轴试验,试验方案见表1。单调加载时,采用应变控制式三轴压缩加载模式,加载速率为0.05 mm/min。循环加载时,输入应力控制式正弦波形荷载并调整循环应力比CSR(CSR定义为循环偏应力幅值和单调加载时峰值偏应力之比)大小。对于Cyc1和Cyc2组试验,CSR逐级增大且每级荷载循环振次N均为10。

    表  1  单调及循环三轴试验
    Table  1.  Monotonic and cyclic triaxial tests
    试验类别组号p0/kPaNCSR
    单调试验Mon1200
    Mon2400
    Mon350
    Mon4100
    Mon5300
    循环试验Cyc12001300.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.7, 1.0, 1.35
    Cyc24001300.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.7, 1.0, 1.35
    Cyc320010000.5
    Cyc4200201.0
    Cyc540010000.5
    下载: 导出CSV 
    | 显示表格

    为了获得静动加载条件下土体小应变刚度演化规律,本文结合GDS 弯曲元测试系统对单调和循环三轴试验过程中的土样进行剪切波速测试。该系统包括两个压电传感器,其中一个作为激发源装配在土样帽上插入土样上端,另一个作为接收器固定在压力室底部插入土样下端。试验时,激发源产生的剪切波通过土体传播到接收端,通过观察时域波形得到剪切波在土样内的传播波速,进而根据土体密度得到其小应变剪切模量。本次试验在多个阶段进行了剪切波速的量测。第一个阶段为固结完成时(εa=0或N=0),以建立小应变剪切模量与初始固结围压的定量关系。同时,为了研究静动力加载历史对土体小应变刚度特性的影响,对Mon1、Mon2和Cyc1~5等7组三轴试验,当应变或振次达到设定值后暂停加载,待试样内孔压均匀稳定分布后进行弯曲元试验。

    图1(a)所示为通过弯曲元试验获得的固结完成时土体小应变剪切模量G0和初始固结围压p0的关系。由图可知,G0p0增大而增大。早期研究表明,对于正常固结饱和软黏土,其小应变剪切模量可表示为初始固结围压和孔隙比的函数[3],即Hardin公式:

    图  1   Gmax,0-p0关系和归一化Gmax,0-p0关系
    Figure  1.  Relationship between Gmax,0 and p0 and normalized relationship between Gmax,0 and p0
    G0/pa=SF(e)(p0/pa)n (1)

    式中 S,n为经验参数;pa为大气压力以统一量纲(pa=101 kPa);F(e)是表征孔隙比影响的函数,对于饱和软黏土一般采用以下形式[5]

    F(e)=1/(0.3+0.7e2) (2)

    根据式(1),(2)对图1(a)中数据进行归一化处理,如图1(b)所示。结果表明,考虑孔隙比影响的小应变剪切模量与初始有效围压有较好的相关性,可用式(1)拟合。对于本试验所用的嘉兴原状软黏土,经验参数S,n可分别取为S=358和n=0.665。

    对于单调荷载试验Mon1和Mon2,在轴向应变发展的不同阶段进行了剪切波速的量测,并根据土样高度变化情况算出各阶段小应变剪切模量Gmax,如图2所示。可见,土体小应变剪切模量随单调加载引起的轴向应变先减小后增大;在εa为8%~10%处,Gmax/G0达到最小值。这表明在单调加载初期,由于孔压累积引起有效应力降低、颗粒排布扰动及结构损伤,土体刚度逐渐降低;随着加载继续进行,试样呈现应变硬化,且由于发生剪胀有效应力有所恢复,土体小应变剪切模量转而增大。

    图  2  单调加载下的小应变剪切模量
    Figure  2.  Small strain shear moduli under monotonic loading

    单调剪切荷载作用时,土体在中到大应变下的刚度弱化特性一般用割线模量Gsec表征。图3给出了不同初始围压条件下割线模量衰减规律。具体来说,Gsec随应变发展逐渐减小并趋近于0;同时,初始固结围压越大,Gsec相对更大且衰减更快。进一步地,对割线模量进行归一化处理后,可以发现,Gsec/G0随轴向应变衰减的规律不受初始固结条件的影响而近似唯一。

    图  3  割线模量与应变的关系
    Figure  3.  Secant moduli against axial strain

    图2类似,图4所示为循环剪切过程中土体归一化小应变剪切模量Gmax/G0与单幅应变的关系,该关系受初始固结围压和循环荷载幅值影响较小。当应变较小时,归一化剪切模量急剧减小;随着循环应变进一步发展,Gmax/G0减小的趋势逐渐缓慢,最终稳定至0.2左右。这表明,动荷载作用下土体的循环弱化将使得其刚度降低,且这种降低的趋势可由单幅应变较好表征。与常见的基于循环振次N的刚度软化模型相比,建立小应变剪切模量与循环单幅应变的关联无需考虑动荷载幅值的影响。

    图  4  循环加载下的小应变剪切模量
    Figure  4.  Small strain shear moduli under cyclic loading

    循环剪切荷载作用下,土体发生塑性变形时的刚度弱化特性通常用等价模量Geq表征,Geq一般定义为某一循环振次所形成的应力应变滞回圈骨干线的斜率[12]图5(a)所示为5组循环三轴试验中等价模量衰减规律。总地来说,Geq随单幅应变发展逐渐减小并趋近于0;给定固结围压条件下,循环应力比CSR对动模量随应变减小的规律无显著影响;但是,当初始固结围压不同时,Geq在高围压下相对较大且衰减更快。根据弯曲元试验测得的固结完成时小应变剪切模量对等价模量进行归一化处理,如图5(b)所示。可以看到,归一化后的等价模量与动单幅应变的关系在不同试验条件下具有较好一致性,与初始围压和循环应力比均无关。这与王军等[9]观察到的杭州软土刚度软化特征类似。Geq/G0εa,s减小的趋势在应变较小时逐渐加快后又减慢,在εa,s =1%后缓慢趋近于0。图5(b)中一并给出了单调加载下土体归一化割线模量Gsec/G0随轴向应变衰减的均值线。与循环剪切荷载相比,单调加载时饱和软黏土在中到大应变下(εaεa,s >0.01%塑性模量相对较小,刚度衰减速率也相对较慢。

    图  5  等价模量及归一化等价模量与应变的关系
    Figure  5.  Equivalent moduli and normalized equivalent moduli against axial strain

    图4,5表明,饱和软黏土在动荷载作用下的小应变剪切模量Gmax和等价模量Geq都会随循环应变累积发生弱化,且这种弱化趋势经归一化处理后与固结围压和循环应力比无关。据此,可直接建立动模量Geq/G0和小应变剪切模量Gmax/G0之间的关联,如图6所示。从图中可以看到,在循环荷载作用的不同阶段,饱和软土的Geq/G0Gmax/G0间存在唯一关系:前者随着后者的减小而不断减小,可用下式表示:

    图  6  循环加载下等价模量与小应变剪切模量的关系
    Figure  6.  Relationship between equivalent modulus and small strain shear modulus under cyclic loading
    ln(Geq/G0)=a+b(Gmax/G0), (3)

    式中,a,b为经验参数,对于本文的嘉兴海洋软黏土,分别取a=-6.57和b=5.85。在工程实际中,可通过现场试验获得的剪切波速确定土体小应变剪切模量,基于实验室建立的动模量与小应变剪切模量的关系,从而快速评估动力加载历史对土体刚度弱化特性的影响。为了获得针对海上风电工程动荷载作用特点的软黏土强度折减规律,尚需对动载结束的土样进一步开展抗剪强度试验研究,并考虑复杂初始应力状态和动力加载条件的影响。

    本文开展了一系列静动三轴联合弯曲元试验,探讨不排水条件下静动应力加载历史对原状饱和软黏土刚度弱化特性的影响。

    (1)海洋软黏土正常固结完成时的小应变剪切模量与初始有效围压有较好的相关性,可用Hardin公式描述孔隙比和固结围压的影响。

    (2)单调剪切荷载作用下,土体小应变剪切模量随轴向应变先减小后增大;其在中到大应变下的割线模量则不断减小直至趋近于0。

    (3)循环剪切荷载作用下,土体小应变剪切模量逐渐减小并最终趋于稳定;归一化动模量随循环单幅应变不断减小,且其值相较于单调剪切时的割线模量略大。土体动模量弱化特性可通过动荷载作用下的小应变剪切模量表征,二者存在较好的一致性关系,与初始固结围压和循环荷载幅值无关。

  • 图  1   菌丝复合轻质土图片

    Figure  1.   Photos of composite mycelium lightweight soil

    图  2   不同骨料的菌丝复合轻质土的干密度变化

    Figure  2.   Variation of dry density of mycelium bio-composites with different aggregate contents

    图  3   菌丝复合轻质土与EPS轻质材料的干密度对比

    Figure  3.   Comparison of dry densities of composite mycelium lightweight soil and EPS lightweight materials

    图  4   骨料含量对菌丝复合轻质土的渗透系数的影响

    Figure  4.   Effect of aggregate content on permeability coefficient of composite mycelium lightweight soil with different fungal strains

    图  5   菌丝复合轻质土的破坏模式

    Figure  5.   Failure modes of composite mycelium lightweight soil

    图  6   菌丝复合轻质土的应力-应变曲线

    Figure  6.   Relationship between stress and strain of mycelial bio-composites

    图  7   骨料含量对菌丝复合轻质土的峰值抗压强度与杨氏模量的影响

    Figure  7.   Effect of aggregate content on UCS and Young’s modulius of composite mycelium lightweight soil with different fungal strains

    图  8   骨料含量对菌丝复合轻质土的峰值抗压强度与残余强度的影响

    Figure  8.   Effects of aggregate content on peak strength and residual strength of composite mycelium lightweight soil

    图  9   骨料含量对菌丝复合轻质土的峰值抗压强度与残余强度比值的影响

    Figure  9.   Effect of aggregate content on ratio of peak strength to residual strength of composite mycelium lightweight soil

    图  10   菌丝复合轻质土与EPS轻质材料的力学特性对比

    Figure  10.   Comparison of mechanical properties of composite mycelium lightweight soil and EPS lightweight materials

    图  11   干密度对菌丝复合轻质土的峰值抗压强度的影响

    Figure  11.   Effect of dry density on UCS of composite mycelium lightweight soil with different fungal strains

    图  12   干密度对菌丝复合轻质土的杨氏模量的影响

    Figure  12.   Effect of dry density on Young’s modulus of composite mycelium lightweight soil with different fungal strains

    图  13   菌丝复合轻质土的扫描电子显微镜图像

    Figure  13.   SEM images of composite mycelium lightweight soil

    图  14   菌丝复合轻质土(P-S7.5)的X-Y方向典型切片和局部孔隙分布(红色)

    Figure  14.   Images of typical sections of composite mycelium lightweight soil (P-S7.5) in X-Y directions and distribution of local pores

    表  1   试验内容

    Table  1   Test items

    骨料含量/%菌种试验内容
    糙皮侧耳长根菇海洋真菌
    0C-S0P-S0M-S0密度测试变水头渗透无侧限强度
    7.5C-S7.5P-S7.5M-S7.5
    15.0C-S15P-S15M-S15
    22.5C-S22.5P-S22.5M-S22.5
    30.0C-S30P-S30M-S30
    37.5C-S37.5P-S37.5M-S37.5
    下载: 导出CSV
  • [1]

    MILED K, SAB K, LE ROY R. Particle size effect on EPS lightweight concrete compressive strength: experimental investigation and modelling[J]. Mechanics of Materials, 2007, 39(3): 222-240. doi: 10.1016/j.mechmat.2006.05.008

    [2] 朱伟, 李明东, 张春雷, 等. 砂土 EPS 颗粒混合轻质土的 最优击实含水率[J]. 岩土工程学报, 2009, 31(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200901006.htm

    ZHU Wei, LI Ming-dong, ZHANG Chun-lei, et al. The optimum moisture content of sand EPS beads mixed lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200901006.htm

    [3]

    LOOMIS D, GUYTON K Z, GROSSE Y, et al. Carcinogenicity of benzene[J]. The Lancet Oncology, 2017, 18(12): 1574-1575. doi: 10.1016/S1470-2045(17)30832-X

    [4]

    SHAKIR M A, AZAHARI B, YUSUP Y, et al. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 65(2): 253-263.

    [5]

    GHANBARI F, COSTANZO F, HUGHES D P, et al. Phase-field modeling of constrained interactive fungal networks[J]. Journal of the Mechanics and Physics of Solids, 2020, 145: 104160. doi: 10.1016/j.jmps.2020.104160

    [6]

    HOLT G A, MCINTYRE G, FLAGG D, et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts[J]. Journal of Biobased Materials and Bioenergy, 2012, 6(4): 431-439. doi: 10.1166/jbmb.2012.1241

    [7]

    XING Y, BREWER M, EL-GHARABAWY H, et al. Growing and testing mycelium bricks as building insulation materials[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, Sanya.

    [8]

    ELSACKER E, VANDELOOK S, BRANCART J, et al. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates[J]. PLoS One, 2019, 14(7): e0213954. doi: 10.1371/journal.pone.0213954

    [9]

    PELLETIER M G, HOLT G A, WANJURA J D, et al. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates[J]. Industrial Crops and Products, 2013, 51: 480-485. doi: 10.1016/j.indcrop.2013.09.008

    [10]

    PELLETIER M G, HOLT G A, WANJURA J D, et al. Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative[J]. Industrial Crops and Products, 2019, 139: 111533. doi: 10.1016/j.indcrop.2019.111533

    [11]

    JONES M, MAUTNER A, LUENCO S, et al. Engineered mycelium composite construction materials from fungal biorefineries: a critical review[J]. Materials & Design, 2020, 187: 108397.

    [12]

    APPELS F V W, CAMERE S, MONTALTI M, et al. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites[J]. Materials & Design, 2019, 161: 64-71.

    [13]

    JIANG L, WALCZYK D, MCINTYRE G, et al. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms[J]. Journal of Manufacturing Processes, 2017, 28: 50-59. doi: 10.1016/j.jmapro.2017.04.029

    [14]

    JIANG L, WALCZYK D, MCINTYRE G, et al. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: resin transfer molding (RTM) process, flexural properties, and simulation[J]. Journal of Cleaner Production, 2019, 207: 123-135. doi: 10.1016/j.jclepro.2018.09.255

    [15]

    ISLAM M R, TUDRYN G, BUCINELL R, et al. Morphology and mechanics of fungal mycelium[J]. Scientific Reports, 2017, 7(1): 13070. doi: 10.1038/s41598-017-13295-2

    [16]

    GHAZVINIAN A, FARROKHSIAR P, VIEIRA F, et al. Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength[C]//The eCAADe and SIGraDi Conference, University of Porto, 2019, Portugal.

    [17]

    TRAVAGLINI S, NOBLE J, ROSS P G, et al. Mycology matrix composites[C]//Annual Technical Conference, 28th, American Society for Composites, 2013, Pennsylvania.

    [18]

    YANG Z, ZHANG F, STILL B, et al. Physical and mechanical properties of fungal mycelium-based biofoam[J]. Journal of Materials in Civil Engineering, 2017, 29(7): 04017030. doi: 10.1061/(ASCE)MT.1943-5533.0001866

    [19]

    ATTIAS N, DANAI O, ABITBOL T, et al. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis[J]. Journal of Cleaner Production, 2020, 246: 119037. doi: 10.1016/j.jclepro.2019.119037

    [20]

    JIANG L. A New Manufacturing Process for Biocomposite Sandwich Parts Using a Myceliated Core, Natural Reinforcement and Infused Bioresin[D]. Ann Arbor: Rensselaer Polytechnic Institute, 2015.

    [21]

    WU J, CHEN C, ZHANG H, et al. Eco-friendly fiberboard production without binder using poplar wood shavings bio-pretreated by white rot fungi Coriolus versicolor[J]. Construction and Building Materials, 2020, 236: 117620. doi: 10.1016/j.conbuildmat.2019.117620

    [22]

    ZHANG X, FAN X, HAN C, et al. Improving soil surface erosion resistance by fungal mycelium[C]//Geo-Congress 2020: Foundations, Soil Improvement, and Erosion, 2020, Reston.

    [23]

    LÓPEZ NAVA J A, MÉNDEZ GONZÁLEZ J, RUELAS CHACÓN X, et al. Assessment of edible fungi and films bio-based material simulating expanded polystyrene[J]. Materials and Manufacturing Processes, 2016, 31(8): 1085-1090. doi: 10.1080/10426914.2015.1070420

    [24]

    LELIVELT R J J, LINDNER G, TEUFFEL P, et al. The production process and compressive strength of mycelium- based materials[C]//First International Conference on Bio- based Building Materials, 2015, Clermont-Ferrand.

    [25]

    ELRAGI A F. Selected Engineering Properties and Applications of EPS Geofoam[D]. Syracuse: State University of New York, 2000.

    [26]

    GAO H M, LIU J Y, LIU H L. Geotechnical properties of EPS composite soil[J]. International Journal of Geotechnical Engineering, 2011, 5(1): 69-77. doi: 10.3328/IJGE.2011.05.01.69-77

    [27] 土工试验方法标准:GB/T 50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)

    [28] 辛凌, 刘汉龙, 沈扬, 等. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报, 2010, 32(3): 428-433. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003023.htm

    XIN Ling, LIU Han-long, SHEN Yang, et al. Consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 428-433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003023.htm

    [29] 谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

    XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

  • 期刊类型引用(3)

    1. 许莹莹,朱晨,孙枫,潘坤,潘晓东. 海相软土弹性剪切模量及静动力刚度弱化特性. 浙江工业大学学报. 2025(02): 131-137+144 . 百度学术
    2. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 . 百度学术
    3. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 . 百度学术

    其他类型引用(6)

图(14)  /  表(1)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  22
  • PDF下载量:  172
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-02-03
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-09-30

目录

/

返回文章
返回