Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil
-
摘要: 研究了冻融循环、干湿循环和交替的干湿—冻融循环对压实膨胀土的微观结构、土–水特征曲线和收缩特征曲线的影响。试验结果表明:冻融、干湿以及干湿—冻融循环显著改变了压实膨胀土的大孔隙系统;干湿循环使压实土样的大孔隙消失,但产生可见的宏观裂隙;冻融循环导致土样产生肉眼不可见的微裂隙;干湿—冻融循环既产生可见的宏观裂缝,又产生不可见的微裂隙。宏观及微观裂隙的产生显著降低了膨胀土在低吸力范围内的持水能力以及从饱和状态到干燥状态的收缩量,但对高吸力范围内的持水能力和土样的缩限和塑限无显著影响;收缩特征曲线等比例收缩段和残余收缩段的斜率在冻融循环和交替的干湿—冻融循环后减小,但在干湿循环后基本保持不变;受3种循环作用后的试样的含水率–孔隙比–吸力关系分布在同一个土–水特征曲面上,该曲面可由本文所提的改进土–水特征曲面模型加以描述。Abstract: The effects of freeze-thaw (FT), drying-wetting (DW) and alternative drying-wetting-freeze-thaw (DWFT) cycles on the micro-structure, soil-water characteristic curve (SWCC) and soil shrinkage characteristic curve (SSCC) of a compacted expansive soil are investigated. The experimental results show that the three investigated cyclic treatments significantly change the macro-pore system of soil. The macro-pores formed during compaction disappear during DW cycles while visible cracks are introduced. FT cycles induce invisible micro-cracks, and macro- and micro-cracks are both discovered in DWFT specimens. Macro- and micro-cracks significantly reduce the water retention capacity of soil in the low suction range and the amount of shrinkage from saturated condition to oven dryness. They have no influences on the SWCC in the high suction range and the shrinkage limit and plastic limit of soil. The slope of the SSCC at the proportional and residual shrinkage stages decreases after FT and DWFT cycles but remains constant after DW cycles. The relationships among moisture content, void ratio and suction of soil after different FT, DW and DWFT cycles are distributed on a unique surface which can be reasonably described by the proposed modified model. This study is useful for understanding the hydro-mechanical behavior of expansive soil under the influences of environmental factors.
-
-
表 1 黑龙江膨胀土的基本物理性质指标及主要化学成分
Table 1 Basic index properties and main chemical components of expansive soil
相对质量密度Gs 液限wL/% 塑限wPL/% 塑性指数IP 自由膨胀率/% pH值 主要化学成分及质量分数/% SiO2 Al2O3 Fe2O3 K2O CaO 2.68 42.84 22.40 20 67 8.2 60.48 18.53 6.63 3.05 4 表 2 收缩曲线模型拟合参数
Table 2 Fitting parameters for SSCC
循环次数 冻融循环 干湿循环 干湿—冻融循环 esat e0 α ξ ζ esat e0 α ξ ζ esat e0 α ξ ζ 0 0.74 0.32 2.99 1.54 0.83 0.74 0.32 2.99 1.54 0.83 0.74 0.32 2.99 1.54 0.83 1 0.77 0.43 0.55 0.26 2.10 0.74 0.38 0.84 0.55 1.38 0.74 0.38 0.94 0.62 1.23 4 0.75 0.47 0.46 0.30 1.89 0.71 0.41 0.53 0.31 1.75 0.74 0.42 0.90 0.72 1.13 6 0.76 0.49 0.60 0.56 1.38 0.69 0.44 0.47 0.27 1.76 0.73 0.45 0.60 0.49 1.36 10 0.74 0.49 0.63 0.60 1.38 0.69 0.43 0.39 0.16 2.20 0.74 0.46 0.56 0.44 1.45 表 3 质量含水率土–水特征曲线拟合参数
Table 3 Fitting parameters for w-SWCC
循环次数 冻融循环 干湿循环 干湿—冻融循环 aw/kPa nw mw wsat/% αw/kPa nw mw wsat/% αw/kPa nw mw wsat/% 0 361 0.91 0.59 27.59 361 0.91 0.59 27.59 361 0.91 0.59 27.59 1 154 0.80 0.60 28.61 130 0.63 0.68 28.13 138 0.71 0.64 27.07 4 77 0.62 0.71 29.07 95 0.56 0.72 27.11 63 0.61 0.64 27.27 6 54 0.65 0.65 28.50 76 0.60 0.65 26.42 41 0.62 0.62 28.04 10 43 0.55 0.74 29.00 64 0.51 0.71 25.79 36 0.61 0.60 27.14 表 4 饱和度土–水特征曲线拟合参数
Table 4 Fitting parameters for Sr-SWCC
循环次数 冻融循环 干湿循环 干湿—冻融循环 as/kPa ns ms as/kPa ns ms as/kPa ns ms 0 2139 1.12 0.06 2139 1.16 0.13 2139 1.16 0.13 1 493 0.50 0.44 342 0.45 0.35 378 0.33 0.50 4 116 0.58 0.40 52 0.47 0.33 89 0.48 0.40 6 52 0.61 0.38 34 0.50 0.32 42 0.60 0.33 10 49 0.58 0.38 27 0.36 0.40 39 0.49 0.41 -
[1] 刘特洪. 工程建设中的膨胀土问题[M]. 北京: 中国建筑工业出版社, 1997. LIU Te-hong. Expansive Soil Problems in Engineering Construction[M]. Beijing: China Building Industry Press, 1997. (in Chinese)
[2] ALONSO E E, GENS A, HIGHT D W. Special problems soils. General Report[C]//9th European Conference on Soil Mechanics and Foundations Engineering, 1987, Dublin: 1087-1146.
[3] 张泽, 马巍, 齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报:地球科学版, 2013, 43(6): 1904-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306021.htm ZHANG Ze, MA Wei, QI Ji-lin. Structure evolution and mechanism of engineering properties change of soils under effect of freeze-thaw cycle[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6): 1904-1914. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306021.htm
[4] 赵鲁庆, 杨更社, 吴迪, 等. 冻融黄土微观结构变化规律及分形特性研究[J]. 地下空间与工程学报, 2019, 15(6): 1680-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906012.htm ZHAO Lu-qing, YANG Geng-she, WU Di, et al. Micro structure and fractal characteristics loess under freeze-thaw cycles[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1680-1690. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906012.htm
[5] 刘红军, 郭颖, 单炜, 等. 土质路堑边坡冻融失稳及植被护坡机理研究[J]. 岩土工程学报, 2011, 33(8): 1197-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108010.htm LIU Hong-jun, GUO Ying, SHAN Wei, et al. Instability of soil cutting slopes caused by freeze-thaw and reinforcement mechanism by vegetation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1197-1203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108010.htm
[6] FREDLUND D G. State of practice for use of the soil-water characteristic curve (SWCC) in geotechnical engineering[J]. Canadian Geotechnical Journal, 2019, 56: 1059-1069. doi: 10.1139/cgj-2018-0434
[7] WHITE N F, DUKE H R, SUNADA D K, et al. Physics of desaturation in porous materials[J]. Journal of the Irrigation and Drainage Division, ASCE, 1970, 96(IR2): 165-191.
[8] VANAPALLI S K, FREDLUND D G, PUFAHL D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Géotechnique, 1999, 49(2): 143-159. doi: 10.1680/geot.1999.49.2.143
[9] 唐朝生, 施斌, 崔玉军. 高放废物地质处置库中缓冲回填材料的收缩特征[J]. 岩土工程学报, 2012, 34(7): 1192-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207005.htm TANG Chao-sheng, SHI Bin, CUI Yu-jun. Shrinkage characteristics of buffer-backfilling materials in high-level radioactive waste geological disposal[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1192-1200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207005.htm
[10] GROENEVELT P H, GRANT C D. Re-evaluation of the structural properties of some British swelling soils[J]. European Journal of Soil Science, 2001, 52(3): 469-477. doi: 10.1046/j.1365-2389.2001.00388.x
[11] 叶为民, 万敏, 陈宝, 等. 干湿循环条件下高压实膨润土的微观结构特征[J]. 岩土工程学报, 2011, 33(8): 1173-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108006.htm YE Wei-min, WAN Min, CHEN Bao, et al. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108006.htm
[12] 魏星, 王刚. 干湿循环作用下击实膨胀土胀缩变形模拟[J]. 岩土工程学报, 2014, 36(8): 1423-1431. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408008.htm WEI Xing, WANG Gang. Modeling swell-shrink behavior of compacted expansive clays subjected to cyclic drying and wetting[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1423-1431. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408008.htm
[13] LIU G, TOLL D G, KONG L, et al. Matric suction and volume characteristics of compacted clay soil under drying and wetting cycles[J]. Geotechnical Testing Journal, 2020, 43(2): 464-479.
[14] 王铁行, 杨涛, 鲁洁. 干密度及冻融循环对黄土渗透性的各向异性影响[J]. 岩土力学, 2016, 37(增刊1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1009.htm WANG Tie-hang, YANG Tao, LU Jie. Influence of dry density and freezing-thawing cycles on anisotropic permeability of loess[J]. Rock and Soil Mechanics, 2016, 37(S1): 72-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1009.htm
[15] 许雷, 刘斯宏, 鲁洋, 等. 冻融循环下膨胀土物理力学特性研究[J]. 岩土力学, 2016, 37(增刊2): 167-174. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2020.htm XU Lei, LIU Si-hong, LU Yang, et al. Physico-mechanical properties of expansive soil under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2016, 37(S2): 167-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2020.htm
[16] 王海涛, 张远芳, 成峰, 等. 冻融循环作用下盐渍土抗剪强度变化规律研究[J]. 地下空间与工程学报, 2016, 12(5): 1271-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201605020.htm WANG Hai-tao, ZHANG Yuan-fang, CHENG Feng, et al. Study on the shear strength change laws of the saline soil subjected to freeze-thaw cycle[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(5): 1271-1276. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201605020.htm
[17] 孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土-水特征曲线[J]. 岩土力学, 2013, 34(7): 1839-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm SUN De-an, ZHANG Jun-ran, LÜ Hai-bo. Soil-water characteristic curve of Nanyang expansive soil in full suction range[J]. Rock and Soil Mechanics, 2013, 34(7): 1839-1846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201307004.htm
[18] CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to descibe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2006, 57(2): 258-268.
[19] FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
[20] GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling of variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105-112.
-
期刊类型引用(19)
1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 . 百度学术
2. 袁立刚,冷伍明,姜涌,朱铁环,安永林,岳健. 降雨对江底凹形纵坡隧道排水池区段的影响及排水报警方法. 铁道科学与工程学报. 2025(03): 1369-1382 . 百度学术
3. 陈云娟,王乐宁,周宗青,贾润枝,杨卓,罗平利,刘梦悦. 基于海底隧道衬砌孔隙水压力的涌水量预测方法及工程应用. 应用基础与工程科学学报. 2024(01): 288-300 . 百度学术
4. 韩智铭,闫科宇,王雪,朱正国,崔会敏. 有限地层三孔并行海底隧道渗流场解析研究. 铁道工程学报. 2024(01): 45-52 . 百度学术
5. 汤钰,王华宁,宋飞. 渗透各向异性地层中隧洞稳态渗流场的半解析预测模型. 力学季刊. 2024(02): 473-482 . 百度学术
6. 韩智铭,闫科宇,崔会敏,刘庆宽. 基于等效面积法的三孔并行海底隧道渗流场解析研究. 工程力学. 2024(S1): 112-116+149 . 百度学术
7. 高启程,姜启武,陈志杰,赖鹏安. 考虑损伤效应的隧道二维渗流场解析及涌水量预测. 人民长江. 2024(10): 197-204+211 . 百度学术
8. 李航达,杨广鹏,韩智铭. 多洞并行海底隧道最佳覆岩厚度变化规律研究. 石家庄铁道大学学报(自然科学版). 2024(03): 40-46 . 百度学术
9. 卢玉东,国金琦,程大伟,毛兴隆. 考虑固液二相互态特性的流固耦合模型. 中国公路学报. 2023(01): 58-69 . 百度学术
10. 张兵海,崔炜,张石磊,杜三林,邓检强,刘毅,朱银邦. 临近水库的隧洞二维渗流场解析解及工程应用研究. 水利水电技术(中英文). 2023(03): 126-134 . 百度学术
11. 马少坤,陈彩洁,段智博,刘莹. 基于镜像法的有限含水层内隧道渗流场解析解及其验证. 工程力学. 2023(05): 172-181 . 百度学术
12. 胡红星. 富水破碎带地层TBM隧道围岩稳定性研究. 科技与创新. 2023(17): 39-44 . 百度学术
13. 乔彤,周建,张天骄,蒋熠诚. 考虑渗透各向异性的水下非圆形隧道渗流场解析. 工程科学与技术. 2023(05): 109-117 . 百度学术
14. 徐锋. 隧道穿越富水断层多场耦合特征分析及施工控制技术. 铁道建筑技术. 2022(05): 148-152 . 百度学术
15. 金波,胡明,方棋洪. 考虑渗流效应的深埋海底隧道围岩与衬砌结构应力场研究. 力学学报. 2022(05): 1322-1330 . 百度学术
16. 郑培超,闫科宇,王雪,韩智铭. 海底隧道三孔并行渗流场泄压规律研究. 现代隧道技术. 2022(S1): 353-362 . 百度学术
17. 王昊,刘广,王静峰,张兴其,浦玉炳,严中,丁兆东. 少荃湖湖底隧道工程渗流场特性分析. 人民珠江. 2021(10): 63-67 . 百度学术
18. 李沣展,岳健,安永林,孙超杰,谭仁华. 河底浅埋小净距隧道施工期渗流性状分析. 湖南科技大学学报(自然科学版). 2021(04): 47-54 . 百度学术
19. 叶亮,丁文其,张清照. 地下水对岩石隧道衬砌作用计算方法的探讨. 现代隧道技术. 2021(S1): 326-335 . 百度学术
其他类型引用(13)