• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和黏土中不同刚度单桩水平循环加载离心试验

李森, 俞剑, 黄茂松

李森, 俞剑, 黄茂松. 饱和黏土中不同刚度单桩水平循环加载离心试验[J]. 岩土工程学报, 2021, 43(5): 948-954. DOI: 10.11779/CJGE202105020
引用本文: 李森, 俞剑, 黄茂松. 饱和黏土中不同刚度单桩水平循环加载离心试验[J]. 岩土工程学报, 2021, 43(5): 948-954. DOI: 10.11779/CJGE202105020
LI Sen, YU Jian, HUANG Mao-song. Centrifuge test on single pile with different rigidities in saturated clay under cyclic lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 948-954. DOI: 10.11779/CJGE202105020
Citation: LI Sen, YU Jian, HUANG Mao-song. Centrifuge test on single pile with different rigidities in saturated clay under cyclic lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 948-954. DOI: 10.11779/CJGE202105020

饱和黏土中不同刚度单桩水平循环加载离心试验  English Version

基金项目: 

国家自然科学基金项目 51579177

详细信息
    作者简介:

    李森(1991—),男,博士,从事海洋基础工程方面的科研工作。E-mail: bxschzg_prepare@163.com

    通讯作者:

    黄茂松, E-mail: mshuang@tongji.edu.cn

  • 中图分类号: TU411

Centrifuge test on single pile with different rigidities in saturated clay under cyclic lateral loading

  • 摘要: 对正常固结黏土中具有不同桩土相对刚度单桩基础的水平静力及循环承载特性开展离心试验研究。在相同土层及桩基埋深条件下,通过调整模型桩材料及桩身截面几何尺寸,实现桩土相对刚度调节,对比组包括刚性桩、柔性桩和半刚性桩。在加载试验前执行T-bar循环插拔试验,各组试验土体强度与弱化参数一致,验证了制样的可靠性。桩基归一化荷载–位移曲线初始刚度和归一化极限承载力均随桩土相对刚度系数增大而增大,表明桩土相对刚度系数可用于描述水平受荷桩静力承载特性。尽管刚性桩刚度受循环荷载的影响更大,其循环稳定桩侧刚度仍显著优于柔性桩结果。循环稳定桩侧刚度与静力刚度比值随桩土相对刚度增大而减低,从长期刚度控制的角度,不断增大桩径不利于长期稳定承载,可通过增大桩基埋深提升长期承载的稳定性。
    Abstract: The centrifuge tests are carried out to investigate the static and cyclic lateral bearing behaviors of single pile with different pile-soil relative rigidities in normal consolidated clay. Under the same soil and pile-buried depth condition, the pile-soil relative rigidity is tuned by adjusting the model pile material and the section geometric parameter. The comparison group includes rigid pile, flexible pile and semi-rigid pile. Before the loading tests, the cyclic T-bar tests are performed, with the results indicating that the clay strength profile and softening parameter of each test are consistent, verifying the reliability of sample preparation. Both the initial stiffness and the ultimate bearing capacity of the normalized load-displacement curve of piles increase with the increase of pile-soil relative rigidity factor, which indicates that the pile-soil relative rigidity factor can be used to describe the static bearing behavior of the laterally loaded pile. Although the rigid pile is more affected under cyclic loading, its cyclic stable stiffness is still significantly larger than that of a flexible pile. The ratio of cyclic stable stiffness to static stiffness decreases under the increasing pile-soil relative rigidity factor. From the perspective of long-term stiffness control, increasing the pile diameter is not conducive to stable performance, which can be improved by increasing the pile-buried depth.
  • 图  1   离心机模型布置图

    Figure  1.   Layout of centrifuge test model

    图  2   T-bar贯入试验结果

    Figure  2.   Results of T-bar tests

    图  3   T-bar抗力循环弱化曲线

    Figure  3.   Cyclic resistance degradation of T-bar test

    图  4   桩顶静力荷载–位移曲线

    Figure  4.   Static load-displacement curves at pile top

    图  5   特柔桩循环荷载位移曲线

    Figure  5.   Cyclic load-displacement curve of extra flexible pile

    图  6   柔性桩循环荷载位移曲线

    Figure  6.   Cyclic load-displacement curves of flexible piles

    图  7   半刚性桩循环荷载位移曲线

    Figure  7.   Cyclic load-displacement curves of semi-rigid piles

    图  8   桩顶荷载比弱化规律

    Figure  8.   Weakening patterns of force ratio at pile top

    图  9   桩侧刚度

    Figure  9.   Lateral stiffnesses of piles

    图  10   桩侧刚度比

    Figure  10.   Lateral stiffness ratios of piles

    表  1   桩基参数

    Table  1   Parameters of piles

    模型桩L/mD/mIp/m4Ep/GPaλ/(kPa·m-1)Es/kPaKR
    特柔桩120.36.28×10-11701.4016687.95×10-4
    柔性桩120.51.10×10-10701.4016681.39×10-3
    半刚性桩120.54.91×10-102001.4016681.77×10-2
    刚性桩[11]122.02.4×10-82001.3916680.86
    下载: 导出CSV
  • [1]

    POULOS H G, DAVIS E H. Pile Foundation Analysis and Design[M]. New York: Wiley, 1980.

    [2]

    American Petroleum Institute. Recommended Practice For Planning, Designing and Constructing Fixed Offshore Platforms[S]. 1987.

    [3]

    MATLOCK H. Correlations for design of laterally loaded piles in soft clay[C]//Proceedings of the 2nd Offshore Technology Conference, 1970, Houston.

    [4]

    REESE L C, WELCH R C. Lateral loading of deep foundations in stiff clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(7): 633-650. doi: 10.1061/AJGEB6.0000177

    [5]

    TAK KIM B, KIM N K, JIN Lee W, et al. Experimental load-transfer curves of laterally loaded piles in Nak-Dong River sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 416-425. doi: 10.1061/(ASCE)1090-0241(2004)130:4(416)

    [6] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807-1815. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310007.htm

    ZHU Bin, XIONG Gen, LIU Jin-chao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807-1815. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310007.htm

    [7]

    BYRNE B, MCADAM R, BURD H, et al. PISA: new design methods for large diameter piles under lateral loading for offshore wind applications[C]//Proceedings of the 3rd International Symposium on Frontiers in Offshore Geotechnics, 2015, Oslo.

    [8]

    ZHANG C, WHITE D, RANDOLPH M. Centrifuge modeling of the cyclic lateral response of a rigid pile in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 137(7): 717-729.

    [9]

    STEWART D, RANDOLPH M. A new site investigation tool for the centrifuge[C]//Proceedings of International Conference on Centrifuge Modelling, 1991, Boulder.

    [10]

    HONG Y, HE B, WANG L, et al. Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: centrifuge tests and numerical modelling[J]. Canadian Geotechnical Journal, 2017, 54(6): 806-824. doi: 10.1139/cgj-2016-0356

    [11]

    YU J, LEUNG C F, HUANG M. Response of monopile foundations under cyclic lateral loading in normally consolidated clay[J]. International Journal of Offshore and Polar Engineering. 2018, 28(4): 411-418. doi: 10.17736/ijope.2018.jc734

    [12] 俞剑, 黄茂松, 张陈蓉. 黏土中两种不同直径单桩水平循环加载模型试验与分析[J]. 岩土力学, 2016, 37(4): 973-980. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604009.htm

    YU Jian, HUANG Mao-song, ZHANG Chen-rong. Model tests and analysis of single piles with two different diameters subjected to cyclic lateral loadings in clay[J]. Rock and Soil Mechanics, 2016, 37(4): 973-980. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604009.htm

    [13]

    USACE. Settlement Analysis Engineer Manual EM 1110-1904[S]. 1990.

    [14]

    CRAIG W. Modeling pile installation in centrifuge experiments[C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, 1985, San Francisco.

    [15]

    ILYAS T, LEUNG C, CHOW Y, et al. Centrifuge model study of laterally loaded pile groups in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3): 274-283. doi: 10.1061/(ASCE)1090-0241(2004)130:3(274)

    [16]

    FINNIE I W S. Performance of Shallow Foundations in Calcareous Soils[D]. Perth: University of Western Australia, 1993.

    [17]

    MARTIN C, RANDOLPH M. Upper-bound analysis of lateral pile capacity in cohesive soil[J]. Géotechnique, 2006, 56(2): 141-145. doi: 10.1680/geot.2006.56.2.141

    [18]

    EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1991-2016. doi: 10.1002/nme.1350

    [19]

    ZHOU H, RANDOLPH M F. Numerical investigations into cycling of full-flow penetrometers in soft clay[J]. Géotechnique, 2009, 59(10): 801-812. doi: 10.1680/geot.7.00200

  • 期刊类型引用(11)

    1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 . 百度学术
    2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 . 百度学术
    3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 . 百度学术
    4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 . 必应学术
    5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 . 百度学术
    6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 . 百度学术
    7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 . 百度学术
    8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 . 百度学术
    9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 . 必应学术
    10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 . 百度学术
    11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 . 百度学术

    其他类型引用(8)

图(10)  /  表(1)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  18
  • PDF下载量:  133
  • 被引次数: 19
出版历程
  • 收稿日期:  2020-08-02
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回