Cyclic bounding surface model for carbonate sand incorporating particle breakage
-
摘要: 钙质砂作为一种海洋生物成因的易破碎材料,由其构成的地基在海洋环境下长期受到动荷载的作用,故模拟钙质砂在循环荷载作用下的颗粒破碎及其对应力应变行为的影响具有重要意义。将引起塑性应变和颗粒破碎的机制分解为两种:有效球应力增加引起的压缩机制和剪应力比变化引起的剪切机制。压缩机制引起的颗粒破碎可由Hardin公式模拟,为适应复杂应力路径,在Hardin公式的基础上建立了增量型的压缩破碎模型。剪切机制引起的颗粒破碎满足两个“递减率”:①在每一个单向剪切过程中,颗粒破碎的累积速率总是在单向剪切起始处最大,并随着单向剪应变的增加而减小;②在总的剪切过程中,颗粒破碎的累积速率随颗粒破碎量的增大而逐渐减小。在边界面本构模型框架中引入所建立的压缩和剪切破碎模型,通过随颗粒破碎量移动的临界状态线反映颗粒破碎对模量、强度和剪胀等应力应变行为的影响,建立了一个考虑颗粒破碎的循环本构模型。通过对钙质砂的单调和循环三轴试验结果的模拟初步验证了所提出本构模型的合理性。Abstract: The carbonate sand is a crushable granular material formed by the marine organisms, and its foundation is subjected to long-term dynamic loading under the ocean environment. Hence, it is of great significance to simulate the particle breakage of the carbonate sand under cyclic loading and its influences on the stress-strain behavior. The mechanism of particle breakage is decomposed of two parts: the compression mechanism with the increase in the mean effective stress, and the shear mechanism with the change of shear stress ratio. The particle breakage caused by the compression mechanism can be simulated by the Hardin’s formula. In order to adapt to the complex stress path, an incremental compression breakage model is established on the basis of the Hardin’s formula. The shear-induced breakage model includes two "declining rules" under the cyclic loading: (1) The accumulate rate of the particle breakage has a maximum value at the initial phase of the monotonic shear process, but decreases with the increasing shear strain. (2) It continuously descends during the whole shear process with the increasing amount of the particle breakage. The compression and shear breakage models are introduced to the framework of the bounding surface constitutive model, and a novel constitutive model considering the particle breakage is established by reflecting the effects of the particle breakage on the stress-strain behaviors such as modulus, strength and dilatancy through the critical state line moving with the amount of the particle breakage. The simulation capability of the proposed constitutive model is verified by comparing with the experimental results of the carbonate sand which is under the monotonic and cyclic drained triaxial compression tests.
-
Keywords:
- carbonate sand /
- particle breakage /
- cyclic loading /
- bounding surface /
- constitutive model
-
-
表 1 本构模型参数
Table 1 Parameters of constitutive model
颗粒破碎 临界状态 剪胀 弹性 塑性 c1=0.07 eΓ0=1.302 d0=0.9 G0=225 np=1.0 c2=1.2 λb=0.1 β=1000 κ=0.007 nd=2.2 A=55.0 λp=0.128 h=0.3 α=400 Mcs0=1.838 λ=0.012 k0=2.5×106 nb=1.393 -
[1] 张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. doi: 10.3969/j.issn.1000-7598.2009.07.029 ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.029
[2] 张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008(10): 195-199. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008(10): 195-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm
[3] 王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
[4] WEI H, ZHAO T, HE J, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
[5] COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
[6] 纪文栋, 张宇亭, 王洋, 等. 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. 岩土力学, 2018, 39(增刊1): 291-297. doi: 10.16285/j.rsm.2018.0580 JI Wen-dong, ZHANG Yu-ting, WANG Yang, et al. Comparative study on shear characteristics of coral calcareous sand and ordinary siliceous sand under cyclic single shear[J]. Rock and Soil Mechanics, 2018, 39(S1): 291-297. (in Chinese) doi: 10.16285/j.rsm.2018.0580
[7] NANDA S, SIVAKUMAR V, DONOHUE S, et al. Small strain behavior and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading[J]. Canadian Geotechnical Journal, 2017, 55(4).
[8] YU F. Particle breakage in triaxial shear of a coral sand[J]. Soils and Foundations, 2018, 58(4): 866-880. doi: 10.1016/j.sandf.2018.04.001
[9] WANG G, WANG Z, YE Q, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 04020012. doi: 10.1061/(ASCE)GM.1943-5622.0001601
[10] JIA Y, CHI S, LIN G. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. Rock and Soil Mechanics, 2009, 30(11): 3261-3260. doi: 10.3969/j.issn.1000-7598.2009.11.007
[11] YAO Y, YAMAMOTO H, WANG N. Constitutive model considering sand crushing[J]. Soils and Foundations, 2011, 48(2): 12-15.
[12] YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
[13] 姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002 YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153 (in Chinese) doi: 10.11779/CJGE201612002
[14] RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179-1192. doi: 10.1139/t04-065
[15] 蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
[16] 王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of coral sand under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
[17] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 44-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
[18] WANG G, ZHA J, Particle breakage evolution during cyclic triaxial shearing of a carbonate sand[J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106326.
[19] CHEN Q, INDRARATNA B, CARTER J P, et al. Isotropic-kinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space[J]. Canadian Geotechnical Journal, 2016, 53(4): 646-658.
[20] LIU H, ZOU D, LIU J. Constitutive modeling of dense gravelly soils subjected to cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(14): 1503-1518.
[21] 张凌凯, 王睿, 张建民, 等. 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554, 2562. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907008.htm ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, et al. A static and dynamic constitutive model of rockfill material considering particle breakage[J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554, 2562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907008.htm
[22] 刘恩龙, 陈生水, 李国英, 等. 循环荷载作用下考虑颗粒破碎的堆石体本构模型[J]. 岩土力学, 2012, 33(7): 1972-1978. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207010.htm LIU En-long, CHEN Shen-shui, LI Guo-ying, et al. A constitutive model for rockfill materials incorporating grain crushing under cyclic loading[J]. Rock and Soil Mechanics, 2012, 33(7): 1972-1978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207010.htm
[23] SUN Y, XIAO Y, WEN J. Bounding surface model for ballast with additional attention on the evolution of particle size distribution[J]. Science China Technological Sciences, 2014, 57(7): 1352-1360.
[24] WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. J Eng Mech-ASCE, 1990, 116(5): 983-1001.
[25] 杨雪强, 朱志政, 何世秀, 等. 对Lade-Duncan, Matsuoka-Nakai和Ottosen等破坏准则的认识[J]. 岩土工程学报, 2006, 28(3): 337-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603013.htm YANG Xue-qiang, ZHU Zhi-zheng, HE Shi-xiu, et al. Researches on failure criteria of Lade-Duncan, Matsuoka-Nakai and Ottosen[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 337-342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603013.htm
[26] RICHART F E, HALL J R, WOODS R D. Vibrations of soils and foundations[M]. Englewood Cliffs, NJ: Prentice-Hall, 1970.
[27] LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-186.
[28] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
[29] WANG Z, WANG G, YE Q. A constitutive model for crushable sands involving compression and shear induced particle breakage[J]. Computers and Geotechnics, 2020, 126: 103757.
[30] LEE K L, FARHOOMAND I. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 1967, 4(1): 68-86.
[31] EINAV I. Breakage mechanics-Part I: Theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297.
[32] WOOD D M, MAEDA K. Changing grading of soil: Effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14.
[33] CIANTIA M O, ARROYO M, O'SULLIVAN C, et al. Grading evolution and critical state in a discrete numerical model of Fontainebleau sand[J]. Géotechnique, 2019, 69(1): 1-15.
[34] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
-
期刊类型引用(7)
1. 陈军浩,张艳娥,王刚,王恒. 不同固结路径下钙质砂固结排水强度性状研究. 岩土力学. 2024(08): 2290-2298 . 百度学术
2. 杨铮涛,王路阳,吴琪,周正龙,陈国兴. 细粒含量和相对密度对饱和珊瑚砂体应变发展特性影响试验. 工程科学与技术. 2024(06): 197-206 . 百度学术
3. 郅彬,王小婵,刘恩龙. 颗粒形状对粒状材料破碎演化规律及强度准则影响. 岩土力学. 2023(03): 649-662+833 . 百度学术
4. 汪成贵,束善治,肖杨,路德春,刘汉龙. 考虑钙质砂颗粒破碎的分数阶边界面本构模型. 岩土工程学报. 2023(06): 1162-1170 . 本站查看
5. 陈榕,武智勇,郝冬雪,高宇聪. 高应力下石英砂三轴剪切颗粒破碎演化规律及影响. 岩土工程学报. 2023(08): 1713-1722 . 本站查看
6. 刘志遐,郭成超,曹鼎峰,黄锐. 中国南海珊瑚钙质砂压缩特性. 科学技术与工程. 2022(06): 2401-2408 . 百度学术
7. 高燕,史天根,李文龙,陈庆. 钙质砂压缩过程中颗粒破碎的细观特征. 水力发电学报. 2022(06): 120-130 . 百度学术
其他类型引用(8)