Blasting vibration response and control of high rock slopes of thin mountain
-
摘要: 针对赤湾山高边坡爆破振动响应问题,开展了爆破振动实测数据分析和动力有限元数值模拟,分析了单薄山体岩质高边坡的爆破振动响应特征。结果表明:幅值方面,迎爆侧坡面存在明显的爆破振动高程放大效应,高程放大效应测点的主振方向偏于垂直坡面走向;背爆侧坡面爆破振动随爆心距增加整体呈衰减趋势。持续时间方面,迎爆侧坡面爆破振动完整波形持续时间和优势振动持续时间均随水平爆心距和高程增加而显著延长;坡顶附近,测点起振时刻越晚,其爆破振动峰值反而越大。频率方面,赤湾山边坡自振频率远大于常见单面边坡的自振频率;随水平爆心距和高程增加,迎爆侧坡面爆破振动视主频整体呈衰减趋势,优势频带由100 Hz左右衰减至15 Hz左右,且落在边坡固有频率内。结合赤湾山高边坡爆破振动响应特征和工程实际,采取电子雷管起爆网路、优化开挖程序和抵抗线方向、边坡支护防护等措施控制爆破振动。Abstract: The blasting vibration response characteristics of high rock slopes of a thin mountain are studied by analyzing the monitoring data and numerical results of blasting vibration of Chiwan Mountain high rock slope. The results in vibration amplitude show that the elevation amplification effect of blasting vibration exits on the south slope, and main vibration directions of the monitoring points showing elevation amplification effect are across the slope. However, the blasting vibration decays versus distance on the north slope. In terms of vibration duration, durations of complete blasting vibration and dominant vibration waveforms on the south slope are significantly prolonged with the increase in distance from the blasting source to the monitoring points. Near the top of the slope, the later the starting point of blasting vibration is, the larger the particle peak velocity of the blasting vibration is. In terms of frequency characteristics, the natural frequency of Chiwan Mountain high rock slope is much higher than that of the common single-sided rock slope. With the increase of the distance from the blasting source to the monitoring points, apparent frequency of blasting vibration on the south slope decreases, and the dominant frequency band of blasting vibration is reduced from high frequency band around 100 Hz to the low one around 15 Hz that falls within the natural frequency range of the slope. Finally, three measures, including electronic detonator initiation network, excavation procedure and resistance line direction optimization, and support and protection, are proposed for controlling the blasting vibration of Chiwan Mountain high rock slope.
-
-
表 1 赤湾山高边坡岩体参数表
Table 1 Parameters of rock mass of Chiwan Mountain high slope
岩体类别 天然重度/(kN·m-3) 黏聚力/kPa 内摩擦角/(°) 弹性模量/MPa 泊松比 强风化岩 22.5 200 38.0 400 0.28 中风化岩 25.0 500 40.5 2000 0.26 微风化岩 26.1 2000 42.5 15000 0.24 表 2 场平石方爆破参数表
Table 2 Blasting parameters for site formation
爆区 孔径/mm 药径/mm 孔深/m 间排距/(m×m) 堵塞长度/m 单耗/(kg·m-3) 1 115 90 11.0~13.5 4.0×3.5 3.5~4.0 0.36 2 115 90 10.2~12.6 4.0×3.5 3.0~4.0 0.35 表 3 爆破主振方向PPV
Table 3 PPV in main vibration direction
测点编号 爆区1 爆区2 y向PPV/(cm·s-1) 主振PPV/(cm·s-1) 偏差/% y向PPV/(cm·s-1) 主振PPV/(cm·s-1) 偏差/% #1 1.19 1.37 14.9 0.48 0.48 0.1 #2 0.29 0.37 26.3 0.17 0.19 11.8 #3 0.23 0.26 14.0 0.13 0.16 23.1 #4 0.38 0.40 4.9 0.25 0.26 4.0 #5 0.53 0.53 0.9 0.39 0.40 2.6 #6 0.82 0.82 0.4 0.48 0.48 0.1 #7 1.65 1.71 3.8 1.35 1.48 9.6 表 4 迎爆侧坡面爆破振动数值模拟结果
Table 4 Numerical results of blasting vibration on south slope
测点编号 水平向PPV/(cm·s-1) 水平向偏差/% 竖直向PPV/(cm·s-1) 竖直向偏差/% 实测 数值 实测 数值 #2 0.29 0.34 17.2 0.23 0.26 13.0 #3 0.23 0.27 17.4 0.20 0.24 20.0 #4 0.38 0.42 10.5 0.29 0.33 13.8 #5 0.53 0.57 7.5 0.41 0.45 9.8 #6 0.82 0.71 13.4 0.53 0.58 9.4 #7 1.65 1.34 18.8 0.63 0.65 3.2 -
[1] 郭学彬, 肖正学, 张志呈. 爆破振动作用的坡面效应[J]. 岩石力学与工程学报, 2001, 20(1): 83-87. doi: 10.3321/j.issn:1000-6915.2001.01.019 GUO Xue-bin, XIAO Zheng-xue, ZHANG Zhi-cheng. Slope effect of blasting vibration[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(1): 83-87. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.01.019
[2] 谭文辉, 璩世杰, 毛市龙, 等. 边坡爆破振动高程效应分析[J]. 岩土工程学报, 2010, 32(4): 619-623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004024.htm TAN Wen-hui, QU Shi-jie, MAO Shi-long, et al. Altitude effect of blasting vibration in slopes[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 619-623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004024.htm
[3] KAHRIMAN A. Analysis of parameters of ground vibration produced from bench blasting at a limestone quarry[J]. Soil Dynamics & Earthquake Engineering, 2004, 24(11): 887-892.
[4] AK H, IPHAR M, YAVUZ M, et al. Evaluation of ground vibration effect of blasting operations in a magnesite mine[J]. Soil Dynamics & Earthquake Engineering, 2009, 29(4): 669-676.
[5] CHOI B H, RYU C H, DEB D, et al. Case study of establishing a safe blasting criterion for the pit slopes of an open-pit coal mine[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 57: 1-10. doi: 10.1016/j.ijrmms.2012.07.014
[6] DEB D, KAUSHIK K N R, CHOI B H, et al. Stability assessment of a pit slope under blast loading: a case study of Pasir Coal Mine[J]. Geotechnical and Geological Engineering, 2011, 29: 419-429. doi: 10.1007/s10706-010-9387-4
[7] 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究[J]. 岩石力学与工程学报, 2011, 30(11): 2189-2195. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111005.htm CHEN Ming, LU Wen-bo, LI Peng, et al. Elevation amplification effect of blasting vibration velocity in rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189-2195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111005.htm
[8] 杨风威, 李海波, 刘亚群, 等. 台山核电站边坡爆破振动监测及数值模拟研究[J]. 岩土力学, 2011, 32(增刊2): 628-633. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2104.htm YANG Feng-wei, LI Hai-bo, LIU Ya-qun, et al. Monitoring of blasting vibration and numerical simulation of slope in Taishan nuclear power station[J]. Rock and Soil Mechanics, 2011, 32(S2): 628-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2104.htm
[9] JIANG N, ZHOU C B, LU S W, et al. Propagation and prediction of blasting vibration on slope in an open pit during underground mining[J]. Tunnelling and Underground Space Technology, 2017, 70: 409-421. doi: 10.1016/j.tust.2017.09.005
[10] 蒋楠, 周传波, 平雯, 等. 岩质边坡爆破振动速度高程效应[J]. 中南大学学报(自然科学版), 2014, 45(1): 238-243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201401033.htm JIANG Nan, ZHOU Chuan-bo, PING Wen, et al. Altitude effect of blasting vibration velocity in rock slopes[J]. Journal of Central South University (Science and Technology), 2014, 45(1): 238-243. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201401033.htm
[11] 武旭, 张云鹏, 郭奇峰. 台阶地形爆破振动放大与衰减效应研究[J]. 爆炸与冲击, 2017, 37(6): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201706017.htm WU Xu, ZAHNG Yun-peng, GUO Qi-feng. Amplification and attenuation effect of blasting vibration on step topography[J]. Explosion and Shock Waves, 2017, 37(6): 128-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201706017.htm
[12] 钟冬望, 吴亮, 陈浩. 爆炸荷载下岩质边坡动力特性试验及数值分析研究[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2964-2971. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1056.htm ZHONG Dong-wang, WU Liang, CHEN Hao. Model test and numerical simulation study of dynamic characteristics of rock slope under blast loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2964-2971. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1056.htm
[13] 李新平, 胡元育, 祝文化, 等. 复杂环境下爆破减振保护层的现场试验研究[J]. 岩石力学与工程学报, 1997, 16(6): 584-589. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199706012.htm LI Xin-ping, HU Yuan-yu, ZHU Wen-hua, et al. In-situ testing study of protective layer for blasting vibration reduction under complex environment[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(6): 584-589. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199706012.htm
[14] HU Y G, LU W B, ZHANG L, et al. Dynamic response and control of middle rock sidewall under impact of blast loading[J]. Journal of Vibration and Control, 2019. doi: 10.1177/1077546319829566.
[15] 洪悯萱. 波的传播及其与介质间断相互作用的数值模拟研究[J]. 岩土力学, 1987, 8(3): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX198703005.htm HONG Min-xuan. Numerical modelling of wave propagation and interaction[J]. Rock and Soil Mechanics, 1987, 8(3): 23-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX198703005.htm
[16] FUYUKI M, NAKANO M. Finite difference analysis of Rayleigh wave transmission past an upward step change[J]. Bulletin of the Seismological Society of America, 1984, 74(3): 893-911.
[17] DALLY J W, LEWIS D. A photoelastic analysis of propagation of Rayleigh waves past a step change in elevation[J]. Bulletin of the Seismological Society of America, 1968, 58(2): 539-563.
[18] SKLAVOUNOS S, RIGAS F. Computer simulation of shock waves transmission in obstructed terrains[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(6): 407-417.
[19] 唐海, 李海波, 蒋鹏灿, 等. 地形地貌对爆破振动波传播的影响实验研究[J]. 岩石力学与工程学报, 2007, 26(9): 1817-1823. TANG Hai, LI Hai-bo, JIANG Peng-can, et al. Experimental study on the effect of topography on the propagation of blasting wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1817-1823. (in Chinese)
[20] ZHANG Q, BAI C H, LIU Q M, et al. Experimental research on amplitude change of blasting seismic wave with topography[J]. Journal of Beijing Institute of Technology, 2000, 9(3): 237-242.
[21] 钟冬望, 何理, 操鹏, 等. 爆破振动持时分析及微差爆破延期时间优选[J]. 爆炸与冲击, 2016, 36(5): 703-709. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201605018.htm ZHONG Dong-wang, HE Li, CAO Peng, et al. Analysis of blasting vibration duration and optimizing of delayed time interval for millisecond blasting[J]. Explosion and Shock Waves, 2016, 36(5): 703-709. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201605018.htm
[22] 刘达, 卢文波, 陈明, 等. 隧洞钻爆开挖爆破振动主频衰减公式研究[J]. 岩石力学与工程学报, 2018, 37(9): 2015-2026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809002.htm LIU Da, LU Wen-bo, CHEN Ming, et al. Attenuation formula of the dominant frequency of blasting vibration during tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2015-2026. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809002.htm
[23] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of The Royal Society A: Mathematical Physical and Engineering, 1998, 454: 903-995.
[24] 张义平, 李夕兵, 赵国彦, 等. 爆破震动信号的时频分析[J]. 岩土工程学报, 2005, 27(12): 1472-1477. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200512019.htm ZAHNG Yi-ping, LI Xi-bing, ZHAO Guo-yan, et al. Time-frequency analysis of blasting vibration signals[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1472-1477. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200512019.htm
[25] 许名标, 彭德红. 某水电站边坡开挖爆破震动动力响应有限元分析[J]. 岩土工程学报, 2006, 28(6): 770-775. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200606018.htm XU Ming-biao, PENG De-hong. Finite element analysis of dynamic response on blasting vibration in slope excavation of a hydroelectric power station[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 770-775. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200606018.htm
[26] DOWDING C H. Construction Vibrations[M]. N J: Prentice Hall, 1996.
[27] YANG R. PPV Management and Frequency Shifting in Soft Ground Near Highwalls to Reduce Blast Damage[C]//Asian-Pacific Symposium on Blasting Techniques, 2009, Dalian.
[28] 爆破安全规程:GB6722—2014[S]. 2014. Safety Regulations for Blasting: GB6722—2014[S]. 2014. (in Chinese)
-
期刊类型引用(14)
1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
2. 孙小宸,宿利平,刘洋. 基于液化势指标的砂土抗液化评价方法及应用. 工程地质学报. 2023(02): 671-679 . 百度学术
3. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 . 百度学术
4. 刘军,苗现国,许军龙,卓慧英,牛天娇. 砂土相对密度试验研究和探讨. 工程勘察. 2023(09): 26-34 . 百度学术
5. 瞿茹,朱长歧,刘海峰,王天民,马成昊,王星. 珊瑚砂界限干密度确定方法的比较研究. 岩土力学. 2023(S1): 461-475 . 百度学术
6. 李志鹏,糟凯龙,何建新,杨海华. 粉煤灰掺量对改良沙漠土毛细水上升规律的影响分析. 粉煤灰综合利用. 2022(01): 87-92 . 百度学术
7. 李识博,代俊芳,吴江伟,肖乐乐. 考虑粒组分类影响的最小孔隙比分布及模型验证. 岩土力学. 2022(S2): 193-204 . 百度学术
8. 戴仁辉,李明东,陈士军,易进翔,高玉峰. 不同粒度粗粒的极限孔隙比和破碎特征. 建筑材料学报. 2021(02): 427-431+439 . 百度学术
9. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗透侵蚀下砂性土细颗粒流失率预测方法. 地下空间与工程学报. 2021(06): 1704-1712 . 百度学术
10. 刘勇,廖燕. 动荷载作用下砂土强度弱化的试验研究. 四川建筑科学研究. 2020(01): 65-70 . 百度学术
11. 赵文丽. 黏粒含量对砂土抗剪强度影响的试验研讨. 建材与装饰. 2020(18): 203+205 . 百度学术
12. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗流作用下颗粒土起动临界坡降研究. 地下空间与工程学报. 2020(S1): 87-93 . 百度学术
13. 吴加武. 挤密砂桩在直立式护岸抗液化处理中的应用. 土工基础. 2019(01): 27-30+34 . 百度学术
14. 黎亮,杨晓松,李宏伟. 南疆绿洲区含残膜砂土击实特性试验研究. 公路. 2019(11): 199-203 . 百度学术
其他类型引用(14)