File failed to load: https://mathjax.xml-journal.net/platformTools/js/MathJax-master/jax/output/SVG/fonts/TeX/fontdata.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

单薄山体岩质高边坡爆破振动响应分析及安全控制

孙鹏昌, 卢文波, 雷振, 陈明, 李瑞泽, 李福千

孙鹏昌, 卢文波, 雷振, 陈明, 李瑞泽, 李福千. 单薄山体岩质高边坡爆破振动响应分析及安全控制[J]. 岩土工程学报, 2021, 43(5): 877-885. DOI: 10.11779/CJGE202105011
引用本文: 孙鹏昌, 卢文波, 雷振, 陈明, 李瑞泽, 李福千. 单薄山体岩质高边坡爆破振动响应分析及安全控制[J]. 岩土工程学报, 2021, 43(5): 877-885. DOI: 10.11779/CJGE202105011
SUN Peng-chang, LU Wen-bo, LEI Zhen, CHEN Ming, LI Rui-ze, LI Fu-qian. Blasting vibration response and control of high rock slopes of thin mountain[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 877-885. DOI: 10.11779/CJGE202105011
Citation: SUN Peng-chang, LU Wen-bo, LEI Zhen, CHEN Ming, LI Rui-ze, LI Fu-qian. Blasting vibration response and control of high rock slopes of thin mountain[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 877-885. DOI: 10.11779/CJGE202105011

单薄山体岩质高边坡爆破振动响应分析及安全控制  English Version

基金项目: 

国家自然科学基金面上项目 51779190

国家自然科学基金面上项目 51779193

湖北省技术创新专项重大项目 2017ACA102

详细信息
    作者简介:

    孙鹏昌(1994—),男,博士研究生,主要从事岩石动力学和工程爆破方面的研究工作。E-mail: sunpch@whu.edu.cn

    通讯作者:

    卢文波, E-mail: wblu@whu.edu.cn

  • 中图分类号: TU45

Blasting vibration response and control of high rock slopes of thin mountain

  • 摘要: 针对赤湾山高边坡爆破振动响应问题,开展了爆破振动实测数据分析和动力有限元数值模拟,分析了单薄山体岩质高边坡的爆破振动响应特征。结果表明:幅值方面,迎爆侧坡面存在明显的爆破振动高程放大效应,高程放大效应测点的主振方向偏于垂直坡面走向;背爆侧坡面爆破振动随爆心距增加整体呈衰减趋势。持续时间方面,迎爆侧坡面爆破振动完整波形持续时间和优势振动持续时间均随水平爆心距和高程增加而显著延长;坡顶附近,测点起振时刻越晚,其爆破振动峰值反而越大。频率方面,赤湾山边坡自振频率远大于常见单面边坡的自振频率;随水平爆心距和高程增加,迎爆侧坡面爆破振动视主频整体呈衰减趋势,优势频带由100 Hz左右衰减至15 Hz左右,且落在边坡固有频率内。结合赤湾山高边坡爆破振动响应特征和工程实际,采取电子雷管起爆网路、优化开挖程序和抵抗线方向、边坡支护防护等措施控制爆破振动。
    Abstract: The blasting vibration response characteristics of high rock slopes of a thin mountain are studied by analyzing the monitoring data and numerical results of blasting vibration of Chiwan Mountain high rock slope. The results in vibration amplitude show that the elevation amplification effect of blasting vibration exits on the south slope, and main vibration directions of the monitoring points showing elevation amplification effect are across the slope. However, the blasting vibration decays versus distance on the north slope. In terms of vibration duration, durations of complete blasting vibration and dominant vibration waveforms on the south slope are significantly prolonged with the increase in distance from the blasting source to the monitoring points. Near the top of the slope, the later the starting point of blasting vibration is, the larger the particle peak velocity of the blasting vibration is. In terms of frequency characteristics, the natural frequency of Chiwan Mountain high rock slope is much higher than that of the common single-sided rock slope. With the increase of the distance from the blasting source to the monitoring points, apparent frequency of blasting vibration on the south slope decreases, and the dominant frequency band of blasting vibration is reduced from high frequency band around 100 Hz to the low one around 15 Hz that falls within the natural frequency range of the slope. Finally, three measures, including electronic detonator initiation network, excavation procedure and resistance line direction optimization, and support and protection, are proposed for controlling the blasting vibration of Chiwan Mountain high rock slope.
  • 图  1   赤湾山高边坡平面图

    Figure  1.   Plan view of Chiwan Mountain high rock slope

    图  2   赤湾山高边坡横断面图(AA)

    Figure  2.   Cross section of Chiwan Mountain high rock slope (A-A)

    图  3   起爆网路示意图(爆区1)

    Figure  3.   Schematic diagram of initiation network (blasting area 1)

    图  4   爆破振动监测系统

    Figure  4.   Monitoring system for blast vibration

    图  5   爆破振动实测波形图(爆区1—#1)

    Figure  5.   Waveforms of blasting vibration (blasting area 1-#1)

    图  6   爆破振动速度分布

    Figure  6.   Distribution of blasting vibration on slope

    图  7   爆破主振方向分布

    Figure  7.   Distribution of main vibration direction on slope

    图  8   爆破振动完整波形持续时间

    Figure  8.   Durations of complete blasting vibration waveform

    图  9   优势振动持续时间

    Figure  9.   Durations of dominant blasting vibration

    图  10   边坡爆破振动视主频

    Figure  10.   Apparent frequencies of blasting vibration

    图  11   爆破振动Hilbert时频谱(y向)

    Figure  11.   Hilbert spectra of blasting vibration in y direction

    图  12   高边坡数值模型

    Figure  12.   Numerical model for high rock slope

    图  13   背爆侧坡面爆破振动速度数值模拟结果

    Figure  13.   Numerical results of blasting vibration on north slope

    图  14   边坡测点爆破振动起振时序

    Figure  14.   Time sequence for starting point of blasting vibration

    图  15   赤湾山高边坡前9阶模态参数

    Figure  15.   First 9 modal parameters of Chiwan Mountain high slope

    图  16   电子雷管起爆网路示意图

    Figure  16.   Electronic detonator initiation network

    图  17   爆破开挖分区分块示意图

    Figure  17.   Procedures of blasting excavation

    图  18   边坡支护和防护措施

    Figure  18.   Support and protection measures

    表  1   赤湾山高边坡岩体参数表

    Table  1   Parameters of rock mass of Chiwan Mountain high slope

    岩体类别天然重度/(kN·m-3)黏聚力/kPa内摩擦角/(°)弹性模量/MPa泊松比
    强风化岩22.520038.04000.28
    中风化岩25.050040.520000.26
    微风化岩26.1200042.5150000.24
    下载: 导出CSV

    表  2   场平石方爆破参数表

    Table  2   Blasting parameters for site formation

    爆区孔径/mm药径/mm孔深/m间排距/(m×m)堵塞长度/m单耗/(kg·m-3)
    11159011.0~13.54.0×3.53.5~4.00.36
    21159010.2~12.64.0×3.53.0~4.00.35
    下载: 导出CSV

    表  3   爆破主振方向PPV

    Table  3   PPV in main vibration direction

    测点编号爆区1爆区2
    y向PPV/(cm·s-1)主振PPV/(cm·s-1)偏差/%y向PPV/(cm·s-1)主振PPV/(cm·s-1)偏差/%
    #11.191.3714.90.480.480.1
    #20.290.3726.30.170.1911.8
    #30.230.2614.00.130.1623.1
    #40.380.404.90.250.264.0
    #50.530.530.90.390.402.6
    #60.820.820.40.480.480.1
    #71.651.713.81.351.489.6
    下载: 导出CSV

    表  4   迎爆侧坡面爆破振动数值模拟结果

    Table  4   Numerical results of blasting vibration on south slope

    测点编号水平向PPV/(cm·s-1)水平向偏差/%竖直向PPV/(cm·s-1)竖直向偏差/%
    实测数值实测数值
    #20.290.3417.20.230.2613.0
    #30.230.2717.40.200.2420.0
    #40.380.4210.50.290.3313.8
    #50.530.577.50.410.459.8
    #60.820.7113.40.530.589.4
    #71.651.3418.80.630.653.2
    下载: 导出CSV
  • [1] 郭学彬, 肖正学, 张志呈. 爆破振动作用的坡面效应[J]. 岩石力学与工程学报, 2001, 20(1): 83-87. doi: 10.3321/j.issn:1000-6915.2001.01.019

    GUO Xue-bin, XIAO Zheng-xue, ZHANG Zhi-cheng. Slope effect of blasting vibration[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(1): 83-87. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.01.019

    [2] 谭文辉, 璩世杰, 毛市龙, 等. 边坡爆破振动高程效应分析[J]. 岩土工程学报, 2010, 32(4): 619-623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004024.htm

    TAN Wen-hui, QU Shi-jie, MAO Shi-long, et al. Altitude effect of blasting vibration in slopes[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 619-623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004024.htm

    [3]

    KAHRIMAN A. Analysis of parameters of ground vibration produced from bench blasting at a limestone quarry[J]. Soil Dynamics & Earthquake Engineering, 2004, 24(11): 887-892.

    [4]

    AK H, IPHAR M, YAVUZ M, et al. Evaluation of ground vibration effect of blasting operations in a magnesite mine[J]. Soil Dynamics & Earthquake Engineering, 2009, 29(4): 669-676.

    [5]

    CHOI B H, RYU C H, DEB D, et al. Case study of establishing a safe blasting criterion for the pit slopes of an open-pit coal mine[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 57: 1-10. doi: 10.1016/j.ijrmms.2012.07.014

    [6]

    DEB D, KAUSHIK K N R, CHOI B H, et al. Stability assessment of a pit slope under blast loading: a case study of Pasir Coal Mine[J]. Geotechnical and Geological Engineering, 2011, 29: 419-429. doi: 10.1007/s10706-010-9387-4

    [7] 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究[J]. 岩石力学与工程学报, 2011, 30(11): 2189-2195. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111005.htm

    CHEN Ming, LU Wen-bo, LI Peng, et al. Elevation amplification effect of blasting vibration velocity in rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189-2195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111005.htm

    [8] 杨风威, 李海波, 刘亚群, 等. 台山核电站边坡爆破振动监测及数值模拟研究[J]. 岩土力学, 2011, 32(增刊2): 628-633. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2104.htm

    YANG Feng-wei, LI Hai-bo, LIU Ya-qun, et al. Monitoring of blasting vibration and numerical simulation of slope in Taishan nuclear power station[J]. Rock and Soil Mechanics, 2011, 32(S2): 628-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2104.htm

    [9]

    JIANG N, ZHOU C B, LU S W, et al. Propagation and prediction of blasting vibration on slope in an open pit during underground mining[J]. Tunnelling and Underground Space Technology, 2017, 70: 409-421. doi: 10.1016/j.tust.2017.09.005

    [10] 蒋楠, 周传波, 平雯, 等. 岩质边坡爆破振动速度高程效应[J]. 中南大学学报(自然科学版), 2014, 45(1): 238-243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201401033.htm

    JIANG Nan, ZHOU Chuan-bo, PING Wen, et al. Altitude effect of blasting vibration velocity in rock slopes[J]. Journal of Central South University (Science and Technology), 2014, 45(1): 238-243. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201401033.htm

    [11] 武旭, 张云鹏, 郭奇峰. 台阶地形爆破振动放大与衰减效应研究[J]. 爆炸与冲击, 2017, 37(6): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201706017.htm

    WU Xu, ZAHNG Yun-peng, GUO Qi-feng. Amplification and attenuation effect of blasting vibration on step topography[J]. Explosion and Shock Waves, 2017, 37(6): 128-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201706017.htm

    [12] 钟冬望, 吴亮, 陈浩. 爆炸荷载下岩质边坡动力特性试验及数值分析研究[J]. 岩石力学与工程学报, 2010, 29(增刊1): 2964-2971. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1056.htm

    ZHONG Dong-wang, WU Liang, CHEN Hao. Model test and numerical simulation study of dynamic characteristics of rock slope under blast loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2964-2971. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1056.htm

    [13] 李新平, 胡元育, 祝文化, 等. 复杂环境下爆破减振保护层的现场试验研究[J]. 岩石力学与工程学报, 1997, 16(6): 584-589. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199706012.htm

    LI Xin-ping, HU Yuan-yu, ZHU Wen-hua, et al. In-situ testing study of protective layer for blasting vibration reduction under complex environment[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(6): 584-589. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199706012.htm

    [14]

    HU Y G, LU W B, ZHANG L, et al. Dynamic response and control of middle rock sidewall under impact of blast loading[J]. Journal of Vibration and Control, 2019. doi: 10.1177/1077546319829566.

    [15] 洪悯萱. 波的传播及其与介质间断相互作用的数值模拟研究[J]. 岩土力学, 1987, 8(3): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX198703005.htm

    HONG Min-xuan. Numerical modelling of wave propagation and interaction[J]. Rock and Soil Mechanics, 1987, 8(3): 23-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX198703005.htm

    [16]

    FUYUKI M, NAKANO M. Finite difference analysis of Rayleigh wave transmission past an upward step change[J]. Bulletin of the Seismological Society of America, 1984, 74(3): 893-911.

    [17]

    DALLY J W, LEWIS D. A photoelastic analysis of propagation of Rayleigh waves past a step change in elevation[J]. Bulletin of the Seismological Society of America, 1968, 58(2): 539-563.

    [18]

    SKLAVOUNOS S, RIGAS F. Computer simulation of shock waves transmission in obstructed terrains[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(6): 407-417.

    [19] 唐海, 李海波, 蒋鹏灿, 等. 地形地貌对爆破振动波传播的影响实验研究[J]. 岩石力学与工程学报, 2007, 26(9): 1817-1823.

    TANG Hai, LI Hai-bo, JIANG Peng-can, et al. Experimental study on the effect of topography on the propagation of blasting wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(9): 1817-1823. (in Chinese)

    [20]

    ZHANG Q, BAI C H, LIU Q M, et al. Experimental research on amplitude change of blasting seismic wave with topography[J]. Journal of Beijing Institute of Technology, 2000, 9(3): 237-242.

    [21] 钟冬望, 何理, 操鹏, 等. 爆破振动持时分析及微差爆破延期时间优选[J]. 爆炸与冲击, 2016, 36(5): 703-709. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201605018.htm

    ZHONG Dong-wang, HE Li, CAO Peng, et al. Analysis of blasting vibration duration and optimizing of delayed time interval for millisecond blasting[J]. Explosion and Shock Waves, 2016, 36(5): 703-709. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201605018.htm

    [22] 刘达, 卢文波, 陈明, 等. 隧洞钻爆开挖爆破振动主频衰减公式研究[J]. 岩石力学与工程学报, 2018, 37(9): 2015-2026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809002.htm

    LIU Da, LU Wen-bo, CHEN Ming, et al. Attenuation formula of the dominant frequency of blasting vibration during tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2015-2026. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809002.htm

    [23]

    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of The Royal Society A: Mathematical Physical and Engineering, 1998, 454: 903-995.

    [24] 张义平, 李夕兵, 赵国彦, 等. 爆破震动信号的时频分析[J]. 岩土工程学报, 2005, 27(12): 1472-1477. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200512019.htm

    ZAHNG Yi-ping, LI Xi-bing, ZHAO Guo-yan, et al. Time-frequency analysis of blasting vibration signals[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1472-1477. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200512019.htm

    [25] 许名标, 彭德红. 某水电站边坡开挖爆破震动动力响应有限元分析[J]. 岩土工程学报, 2006, 28(6): 770-775. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200606018.htm

    XU Ming-biao, PENG De-hong. Finite element analysis of dynamic response on blasting vibration in slope excavation of a hydroelectric power station[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 770-775. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200606018.htm

    [26]

    DOWDING C H. Construction Vibrations[M]. N J: Prentice Hall, 1996.

    [27]

    YANG R. PPV Management and Frequency Shifting in Soft Ground Near Highwalls to Reduce Blast Damage[C]//Asian-Pacific Symposium on Blasting Techniques, 2009, Dalian.

    [28] 爆破安全规程:GB6722—2014[S]. 2014.

    Safety Regulations for Blasting: GB6722—2014[S]. 2014. (in Chinese)

  • 期刊类型引用(14)

    1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
    2. 孙小宸,宿利平,刘洋. 基于液化势指标的砂土抗液化评价方法及应用. 工程地质学报. 2023(02): 671-679 . 百度学术
    3. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 . 百度学术
    4. 刘军,苗现国,许军龙,卓慧英,牛天娇. 砂土相对密度试验研究和探讨. 工程勘察. 2023(09): 26-34 . 百度学术
    5. 瞿茹,朱长歧,刘海峰,王天民,马成昊,王星. 珊瑚砂界限干密度确定方法的比较研究. 岩土力学. 2023(S1): 461-475 . 百度学术
    6. 李志鹏,糟凯龙,何建新,杨海华. 粉煤灰掺量对改良沙漠土毛细水上升规律的影响分析. 粉煤灰综合利用. 2022(01): 87-92 . 百度学术
    7. 李识博,代俊芳,吴江伟,肖乐乐. 考虑粒组分类影响的最小孔隙比分布及模型验证. 岩土力学. 2022(S2): 193-204 . 百度学术
    8. 戴仁辉,李明东,陈士军,易进翔,高玉峰. 不同粒度粗粒的极限孔隙比和破碎特征. 建筑材料学报. 2021(02): 427-431+439 . 百度学术
    9. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗透侵蚀下砂性土细颗粒流失率预测方法. 地下空间与工程学报. 2021(06): 1704-1712 . 百度学术
    10. 刘勇,廖燕. 动荷载作用下砂土强度弱化的试验研究. 四川建筑科学研究. 2020(01): 65-70 . 百度学术
    11. 赵文丽. 黏粒含量对砂土抗剪强度影响的试验研讨. 建材与装饰. 2020(18): 203+205 . 百度学术
    12. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗流作用下颗粒土起动临界坡降研究. 地下空间与工程学报. 2020(S1): 87-93 . 百度学术
    13. 吴加武. 挤密砂桩在直立式护岸抗液化处理中的应用. 土工基础. 2019(01): 27-30+34 . 百度学术
    14. 黎亮,杨晓松,李宏伟. 南疆绿洲区含残膜砂土击实特性试验研究. 公路. 2019(11): 199-203 . 百度学术

    其他类型引用(14)

图(18)  /  表(4)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  34
  • PDF下载量:  247
  • 被引次数: 28
出版历程
  • 收稿日期:  2020-06-30
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回