• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地下连续墙成槽整体稳定性的工程评价方法

黄茂松, 王鸿宇, 谭廷震, 李耀良

黄茂松, 王鸿宇, 谭廷震, 李耀良. 地下连续墙成槽整体稳定性的工程评价方法[J]. 岩土工程学报, 2021, 43(5): 795-803. DOI: 10.11779/CJGE202105002
引用本文: 黄茂松, 王鸿宇, 谭廷震, 李耀良. 地下连续墙成槽整体稳定性的工程评价方法[J]. 岩土工程学报, 2021, 43(5): 795-803. DOI: 10.11779/CJGE202105002
HUANG Mao-song, WANG Hong-yu, TAN Ting-zhen, LI Yao-liang. Engineering evaluation method for overall stability of slurry trenches[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 795-803. DOI: 10.11779/CJGE202105002
Citation: HUANG Mao-song, WANG Hong-yu, TAN Ting-zhen, LI Yao-liang. Engineering evaluation method for overall stability of slurry trenches[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 795-803. DOI: 10.11779/CJGE202105002

地下连续墙成槽整体稳定性的工程评价方法  English Version

基金项目: 

国家自然科学基金重点项目 51738010

国家重点研发计划课题 2016YFC0800202

详细信息
    作者简介:

    黄茂松(1965—),男,浙江玉环人,博士,教授,博士生导师,从事岩土工程方面的科研和教学工作。E-mail: mshuang@tongji.edu.cn

  • 中图分类号: TU43

Engineering evaluation method for overall stability of slurry trenches

  • 摘要: 当前分层地基中地下连续墙成槽整体稳定性验算多采用水平条分法。当槽段宽度与成槽深度比相对较小时,三维水平条分法所给出的计算结果可能偏于不安全。此外,验算时一般采用有效抗剪强度指标并按水土分算原则验算成槽稳定性。然而在当前我国大量的工程实践中,地质勘察报告往往仅提供直剪固结快剪强度指标,如何结合工程实践现状验算槽壁稳定性值得进一步的研究。首先介绍了水平条分法的理论框架,并详细讨论了水平条分法与楔形体滑体模式的内在联系。随后结合某一现场试验展开案例分析,指出了饱和黏土中三维楔形体模式存在的不足,并提出一种基于三维等效楔形体的改进方法。最后结合10个工程案例的验算结果,分析了二维与三维水平条分法在计算结果上的差异,以及强度指标选取和水土压力计算原则对分析结果的影响,为今后的工程实践提供参考。
    Abstract: The horizontal slice method is commonly used for examining the trench stability in layered soils. Unsafe results may be given by the 3D horizontal slice method when the ratio of trench length to depth is relatively small. In addition, the effective soil strength parameters are recommended for trench stability analysis. However, the soil strength parameters in engineering reports are often obtained from the direct shear tests. Further investigation is needed to incorporate the trench stability analysis with the current practice. In this study, the theoretical framework of the horizontal slice method is introduced, and its connection with the sliding wedge method is discussed. The deficiency of the 3D sliding wedge method in undrained clay is shown by a field test, and the improvement by an equivalent 3D wedge method is proposed. A discussion on influences of the differences between 2D and 3D methods, selection of soil strength parameters and water pressure calculation on the calculated results is carried out through 10 collected case studies.
  • 图  1   二维水平条分法示意图

    Figure  1.   Schematic graph for 2D horizontal slice method

    图  2   二维均质地基整体稳定性验算图示

    Figure  2.   2D overall stability analysis in homogeneous soils

    图  3   三维水平条分法示意图

    Figure  3.   Schematic graph for 3D horizontal slice method

    图  4   三维均质地基整体稳定性验算图示

    Figure  4.   3D overall stability analysis in homogeneous soils

    图  5   二维与三维验算方法差异

    Figure  5.   Differences between 2D and 3D methods

    表  1   Vaterland现场试验对比

    Table  1   Comparison for Vaterland site test

    验算方法Fs(油)Fs(泥浆)
    二维楔形体模式0.400.53
    土压力模式0.570.73
    地基承载力模式0.851.48
    三维楔形体模式1.381.84
    三维等效楔形体模式0.951.26
    三维极限分析有限元(上限/下限)0.99/0.871.32/0.92
    下载: 导出CSV

    表  2   工程实例1土层参数

    Table  2   Soil parameters for project 1

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)
    ①素填土0~1.5518.0108
    ①素填土1.55~3.8518.0108
    ②-1淤泥质土3.85~6.4016.385
    ②-2细砂6.40~10.7017.5125
    ②-3粉质黏土10.70~11.9518.02215
    ③-1粉质黏土11.95~15.2018.52518
    ③-2粉质黏土15.20~18.1019.03225
    下载: 导出CSV

    表  3   工程实例2土层参数

    Table  3   Soil parameters for project 2

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)
    ①-1杂填土0~1.8017.5108
    ①-1杂填土1.80~2.6617.5108
    ②-1淤泥质粉质黏土2.66~4.4816.586
    ②-2淤泥质土4.48~6.4716.565
    ②-3粉质黏土6.47~10.5318.52416
    ②-4粉土10.53~12.4319.52518
    ③-1粉质黏土12.43~14.9019.52819
    ④-1全风化泥质粉砂岩14.90~18.6020.02425
    ④-2强风化泥质粉砂岩18.60~21.8021.06030
    下载: 导出CSV

    表  4   工程实例3土层参数

    Table  4   Soil parameters for project 3

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)
    ①-1杂填土0~3.1718.11010
    ①-1杂填土3.17~4.9918.11010
    ①-3素填土4.99~10.7318.11310
    ①-4耕植土10.73~11.7318.11010
    ②-1粉质黏土11.73~15.7119.12515
    ②-2淤泥质黏土15.71~18.3516.864
    ②-3黏土18.35~19.0019.22816
    下载: 导出CSV

    表  5   工程实例4土层参数

    Table  5   Soil parameters for project 4

    土层K0埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)
    ①-2素填土0.450~2.2518.411.113.6
    ②-2淤泥质粉质黏土0.602.25~3.1717.78.411.8
    ②-2淤泥质粉质黏土0.653.17~8.5017.78.411.8
    ②-3A粉土夹粉质黏土0.558.50~11.0518.09.818.9
    ②-3粉质黏土夹粉土0.5811.05~18.1517.810.416.4
    ②-4A粉土夹粉砂0.4718.15~22.1518.58.523.3
    ②-4粉质黏土夹粉土0.5022.15~27.4018.010.516.2
    ②-5粉砂夹粉土0.4527.40~35.0018.31.822.3
    ②-6粉细砂0.4235.00~62.3018.51.533.0
    下载: 导出CSV

    表  6   工程实例5土层参数

    Table  6   Soil parameters for project 5

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)
    ①填土0~0.7718.0510
    ①填土0.77~2.3018.0510
    ②-1黏土2.30~4.3018.02213
    ③黏土4.30~5.6017.51611
    ⑥1-1黏土5.60~8.9819.34817
    ⑥1-2粉质黏土8.98~17.9818.63017
    ⑥-2粉质黏土17.98~25.0018.62416
    下载: 导出CSV

    表  7   工程实例6土层参数

    Table  7   Soil parameters for project 6

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)c /kPaφ /(°)K0
    ①素填土0~1.0018.52219.5727.40.45
    ①素填土1.00~1.5618.52219.5727.40.45
    ②-3黏质粉土1.56~6.3318.3630.0(0)(25.2)0.37
    ③淤泥质粉质黏土6.33~11.5917.41118.5030.10.45
    ④淤泥质黏土11.59~18.4416.5911.5321.20.57
    ⑤-1黏土18.44~21.7617.31413.5621.90.52
    ⑤-2砂质粉土21.76~25.6018.3533.5(0)(26.9)0.36
    ⑤3-1粉质黏土25.60~32.9018.01419.5429.80.47
    注:土层②-3及⑤-2有效抗剪强度指标按式(25)计算得到。
    下载: 导出CSV

    表  8   工程实例7土层参数

    Table  8   Soil parameters for project 7

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)
    ①-1素填土0~2.119.5128
    ①-1素填土2.1~2.619.5128
    ②-1砂质黏土2.6~4.819.52013
    ②-2细砂4.8~6.519.7020
    ②-3中粗砂6.5~8.819.5025
    ②-4黏土8.8~10.418.7208
    ②-5淤泥质土10.4~11.316.8104
    ②-6砾砂11.3~12.620.8030
    ③残积砾质黏性土12.6~16.018.12018
    ④-1全风化花岗岩16.0~18.318.62222
    ④-2-1强风化花岗岩上段18.3~20.518.92525
    下载: 导出CSV

    表  9   工程实例8土层参数(深隧项目)

    Table  9   Soil parameters for project 8

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)c /kPaφ /(°)ccu /kPaφcu /(°)K0
    ②-1粉质黏土0~1.7518.12317.5626.52221.3(0.50)
    ②-3黏质粉土1.75~2.2818.2730.5(0)(31.5)0.40
    ②-3黏质粉土2.28~14.0718.2730.5(0)(31.5)0.40
    ③淤泥质粉质黏土14.07~19.7017.11214.0229.61018.00.50
    ④淤泥质黏土19.70~26.5316.61412.0327.91316.60.53
    ⑤-1黏土26.53~33.6017.21716.0430.51819.60.51
    ⑤-3粉质黏土夹粉砂33.60~46.9117.51919.0531.62021.40.47
    ⑤-4粉质黏土46.91~49.5719.14716.01632.44824.30.47
    ⑦粉砂夹粉质黏土49.57~55.0619.0731.5(0)(34.5)0.37
    ⑧-1粉质黏土55.06~61.7417.62217.5832.42423.90.48
    ⑧-2粉质黏土粉砂互层61.74~77.9718.33020.5833.12426.40.47
    ⑨-1粉砂夹粉质黏土77.97~81.2819.6036.0(0)(25.2)0.35
    ⑨夹粉质黏土夹粉砂81.28~83.3219.11924.5(0)(30.5)(0.45)
    ⑨-2-1粉细砂夹中粗砂83.32~91.8520.4036.0(0)(25.2)0.33
    ⑨-2-2中粗砂91.85~103.3920.4036.0(0)(25.2)0.34
    ⑩黏土103.39~105.0020.09220.51931.69219.00.51
    注:土层②-3、⑦、⑨、⑨-1、⑨-2-1、⑨-2-2有效抗剪强度指标按式(25)计算得到。
    下载: 导出CSV

    表  10   工程实例9土层参数

    Table  10   Soil parameters for project 9

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)
    ②粉质黏土0~1.5218.31414.0
    ③淤泥质粉质黏土1.52~3.0017.5817.5
    ③淤泥质粉质黏土3.00~5.4617.5817.5
    ④淤泥质黏土5.46~13.0616.799.5
    ⑤1-1黏土13.06~18.9417.51211.0
    ⑤1-2粉质黏土18.94~25.3318.01214.0
    ⑤3-1粉质黏土夹黏质粉土25.33~35.2018.1916.5
    ⑤3-2粉质黏土35.20~40.4318.11218.0
    ⑤-4粉质黏土40.43~43.7519.73818.0
    ⑦-1砂质粉土43.75~46.8319.1429.0
    ⑦2-1粉砂46.83~59.0419.0132.0
    ⑦-2夹粉质黏土夹砂质粉土59.04~61.7218.9726.5
    ⑦2-2粉砂61.72~68.8218.9132.0
    ⑨粉砂68.82~75.0019.0131.0
    下载: 导出CSV

    表  11   工程实例10土层参数

    Table  11   Soil parameters for project 10

    土层埋深/m重度/(kN·m-3)ccq /kPaφcq /(°)
    ①杂填土0~1.4018.01015.0
    ②粉质黏土1.40~1.5418.62417.0
    ②粉质黏土1.54~3.0018.62417.0
    ③淤泥质粉质黏土3.00~3.7017.31217.5
    ③夹砂质粉土夹淤泥质粉质黏土3.70~10.4018.4826.5
    ④淤泥质黏土10.40~18.0016.71411.0
    ⑤1-1黏土18.00~23.1017.11612.0
    ⑤1-2粉质黏土23.10~24.5017.71715.0
    下载: 导出CSV

    表  12   验算结果汇总表

    Table  12   Summary of safety factor

    安全系数3D/2D方法1ccq,φcq分算方法2ccq,φcq合算方法3c,φ分算方法4砂性土c,φ分算黏性土ccu,φcu分算方法5砂性土c,φ分算黏性土ccu,φcu合算
    算例1——鸿晖大厦2.64/1.482.94/1.79   
    算例2——君豪国际商业城2.75/1.613.05/1.83   
    算例3——广州三号线2.27/0.872.77/1.25   
    算例4——南京世茂2.67/0.953.03/1.84   
    算例5——东渡悦来城2.45/1.122.73/1.94   
    算例6——西岸传媒港2.31/0.793.85/1.611.80/0.81  
    算例7——城建大厦2.19/1.022.88/1.49   
    算例8——苏州河调蓄工程2.53/0.754.26/1.712.41/0.842.43/0.782.76/1.51
    算例9——徐家汇中心2.11/0.632.74/1.25   
    算例10——9号线2.00/0.663.21/1.31   
    下载: 导出CSV
  • [1]

    NASH J, JONES G K. The support of trenches using fluid mud[C]//Proceedings Symposium: Grouts and Drilling Muds in Engineering Practice, 1963, London: 177-180.

    [2]

    MEYERHOF G G. Stability of slurry trench cuts in saturated clay[C]//Proceedings Speciality Conference on Performance of Earth and Earth Supported Structures, 1972, Lafayette: 1451-1466.

    [3]

    LI Y C, WEI L L, CLEALL P J, et al. Rankine theory-based approach for stability analysis of slurry trenches[J]. International Journal of Geomechanics, 2018, 18(11): 06018029. doi: 10.1061/(ASCE)GM.1943-5622.0001288

    [4]

    MORGENSTERN N, AMIR-TAHMASSEB I. The stability of a slurry trench in cohesionless soils[J]. Géotechnique, 1965, 15(4): 387-395. doi: 10.1680/geot.1965.15.4.387

    [5]

    FILZ G M, ADAMS T, DAVIDSON R R. Stability of long trenches in sand supported by bentonite-water slurry[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(9): 915-921. doi: 10.1061/(ASCE)1090-0241(2004)130:9(915)

    [6]

    LI Y C, PAN Q, CHEN Y M. Stability of slurry trenches with inclined ground surface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1617-1619. doi: 10.1061/(ASCE)GT.1943-5606.0000868

    [7] 夏元友, 裴尧尧, 王智德, 等. 地下连续墙泥浆槽壁稳定性评价的水平条分法[J]. 岩土工程学报, 2013, 35(6): 1128-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306021.htm

    XIA Yuan-you, PEI Yao-yao, WANG Zhi-de, et al. Horizontal slice method for stability of slurry trench[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1128-1133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306021.htm

    [8]

    FOX P J. Analytical solutions for stability of slurry trench[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 749-758. doi: 10.1061/(ASCE)1090-0241(2004)130:7(749)

    [9]

    LI Y C, PAN Q, CLEALL P J, et al. Stability analysis of slurry trenches in similar layered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2104-2109. doi: 10.1061/(ASCE)GT.1943-5606.0000958

    [10] 张厚美, 夏明耀. 地下连续墙泥浆槽稳定的三维分析[J]. 土木工程学报, 2000, 33(1): 73-76. doi: 10.3321/j.issn:1000-131X.2000.01.014

    ZHANG Hou-mei, XIA Ming-yao. 3-D stability of analysis of slurry trenches[J]. China Civil Engineering Journal, 2000, 33(1): 73-76. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.01.014

    [11]

    TSAI J S, CHANG J S. Three-dimensional stability analysis for slurry-filled trench wall in cohesionless soil[J]. Canadian Geotechnical Journal, 1996, 33(5): 798-808. doi: 10.1139/t96-105-325

    [12]

    XANTHAKOS P P. Slurry walls as structural systems[M]. New York: McGraw Hill, 1994.

    [13]

    LI A J, MERIFIELD R S, LIN H D, et al. Trench stability under bentonite pressure in purely cohesive clay[J]. International Journal of Geomechanics, 2014, 14(1): 151-157. doi: 10.1061/(ASCE)GM.1943-5622.0000292

    [14] 基坑工程技术标准(上海): DG/TJ08—61—2018 J11577—2018[S]. 2018.

    Technical Code for Excavation Engineering: DG/TJ08—61—2018 J11577—2018[S]. 2018. (in Chinese)

    [15] 李广信. 对与基坑工程有关的一些规范的讨论(2)[J]. 工程勘察, 2013, 10: 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201309002.htm

    LI Guang-xin. Discussion on some codes concerned with building foundation pit (part 2)[J]. Geotechnical Investigation and Surveying, 2013, 10: 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201309002.htm

  • 期刊类型引用(12)

    1. 李贝贝. 强动压巷道底板变形破坏特征及控制技术研究. 山东煤炭科技. 2025(01): 1-4+11 . 百度学术
    2. 毕智强,于振亚,张涛. 深井动压软岩巷道底鼓变形破坏机理与防治技术. 陕西煤炭. 2025(04): 84-88+113 . 百度学术
    3. 伊丙鼎. 煤层水仓围岩变形破坏特征及控制技术研究. 煤炭工程. 2024(03): 117-123 . 百度学术
    4. 肖同强,王泽源,刘发义,代晓亮,赵帅,余子豪. 深部强动压巷道底鼓控制机理及技术研究. 采矿与安全工程学报. 2024(04): 666-676 . 百度学术
    5. 丁维波,王丹影,闫医慧. 回采巷道底鼓机理及防治技术研究. 煤炭技术. 2024(08): 23-27 . 百度学术
    6. 朱国保,董垠枫. 非均质围岩隧道断面的施工关键技术研究. 四川建筑. 2024(05): 200-201 . 百度学术
    7. 耿铭,孙静. 厚硬顶板悬顶致灾机理及切顶控制技术研究. 工矿自动化. 2024(11): 132-141 . 百度学术
    8. 柴敬,韩志成,雷武林,张丁丁,马晨阳,孙凯,翁明月,张有志,丁国利,郑忠友,张寅,韩刚. 回采巷道底鼓演化过程的分布式光纤实测研究. 煤炭科学技术. 2023(01): 146-156 . 百度学术
    9. 吕情绪,曹军,高亮. 重复采动回采巷道变形机理及稳定控制. 中国矿业. 2023(05): 96-103 . 百度学术
    10. 丁自伟,王少轩,王庆阳,王耀声,王春斌,李军岐,邸广强,李亮. 软岩巷道底鼓机理及其稳定性控制研究. 煤炭工程. 2023(07): 102-109 . 百度学术
    11. 吕志强,黄亚军,景明,徐啸川. 深部软岩巷道变形破坏机理及支护技术. 能源与环保. 2023(11): 280-286 . 百度学术
    12. 杨晓炜. 深部软岩大断面巷道大变形控制技术研究. 能源与环保. 2023(11): 312-318 . 百度学术

    其他类型引用(16)

图(5)  /  表(12)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  34
  • PDF下载量:  387
  • 被引次数: 28
出版历程
  • 收稿日期:  2020-07-01
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回