Optimization of bentonite parameters for shield tunneling based on response surface method
-
摘要: 为确定福州地铁4号线金牛山—工业路盾构区间强风化花岗岩地层中的膨润土改良最优参数,分别选择膨润土泥浆浓度、掺入比和盾构推进速度3个影响因素,以渣土塌落度、渗透系数和改良成本为响应值。采用中心复合试验设计方法进行了20组试验,分别构建了各响应值的响应面函数。试验结果表明,膨润土泥浆浓度、掺入比和盾构推进速度对渣土改良效果均有较大影响,且各因素之间存在显著交互作用。利用响应面-满意度函数,将渣土改良的3个响应值优化问题转化为单一响应值优化,获得强风化花岗岩地层在不同盾构推进速度下的最优改良参数。该方法科学合理,为金牛山—工业路盾构区间在强风化花岗岩内的高效施工提供了技术保障。Abstract: In order to determine the optimal parameters of bentonite improvement in the strongly weathered granite strata in Jinniu Mountain-Gongye Road shield interval of Fuzhou metro line 4, the concentration and mixing ratio of bentonite slurry and advancing speed of shield are selected as the three factors, and the slump, permeability and improvement cost of soils are taken as the response values. The central composite design (CCD) method is used to carry out 20 groups of tests, and the response surface functions of each response value are constructed respectively. The results show the concentration and mixing ratio of bentonite slurry and advancing speed of shield all have great influences on the improvement effect of soils, and there is a significant interaction among these factors. By using the response surface-satisfaction function, the optimization problem of three response values for soil improvement is transformed into that of a single response value, and the optimal improvement parameters of the strongly weathered granite strata under different advancing speeds of shield tunneling are obtained. The proposed method is scientific and reasonable, which provides a technical guarantee for the efficient construction of Jinniu Mountain-Gongye Road shield interval in the strongly weathered granite strata.
-
Keywords:
- EPB shield /
- soil improvement /
- bentonite /
- multi-objective optimization /
- response surface
-
-
表 1 膨润土基本性质表
Table 1 Basic properties of bentonite
吸蓝量/(g·100g-1) 胶质价/(mL·15g-1) 膨胀倍数/(mL·g-1) pH值 细度(200目) 32 400 20 8.0~9.5 95 表 2 中心复合试验结果表
Table 2 Results of central composite tests
运行序 浓度/% 掺入比/% 推进速度/(cm·min-1) 塌落度/mm lgK40 1 5 15 3.5 35 -4.83 2 8 8 2.5 8 -5.11 3 5 15 1.5 113 -4.89 4 11 35 1.5 140 -5.64 5 8 25 2.5 122 -4.98 6 11 15 1.5 56 -5.41 7 5 35 1.5 231 -4.68 8 5 35 3.5 201 -4.72 9 8 25 4.2 153 -4.60 10 8 25 2.5 147 -4.96 11 3 25 2.5 183 -4.57 12 8 25 2.5 151 -4.93 13 8 42 2.5 191 -5.17 14 13 25 2.5 106 -5.42 15 8 25 2.5 138 -5.04 16 11 15 3.5 30 -5.14 17 8 25 0.8 171 -5.01 18 8 25 2.5 147 -5.00 19 11 35 3.5 155 -5.39 20 8 25 2.5 141 -4.98 表 3 回归模型方差分析表
Table 3 Analysis of variance of regression model
预测响应值 变异来源 平方和 均方 F值 P值 备注 Y1 模型 64180.16 9168.59 52.78 < 0.0001 显著 X1 7894.86 7894.86 45.45 < 0.0001 X2 47051.44 47051.44 270.88 < 0.0001 X3 1629.43 1629.43 9.38 0.0098 X1 X2 709.08 709.08 4.08 0.0662 X1 X3 1178.79 1178.79 6.79 0.0230 X2 X3 965.22 965.22 5.56 0.0362 X22 4751.34 4751.34 27.35 0.0002 失拟项 1516.83 216.69 1.91 0.2472 不显著 Y2 模型 1.28 0.21 27.00 < 0.0001 显著 X1 1.06 1.06 134.01 < 0.0001 X2 0.01 0.01 1.12 0.3102 X3 0.02 0.02 2.08 0.1733 X1 X2 0.06 0.06 8.11 0.0137 X1 X3 0.03 0.03 4.13 0.0631 X22 0.10 0.10 12.55 0.0036 失拟项 0.10 0.01 7.76 0.0186 不显著 表 4 响应优化目标范围
Table 4 Target ranges of response optimization
响应 塌落度/cm lgK40 膨润土单耗/(kg/环) 优化目标 100<Y1<200,Y1=150最为理想 -5.45<Y2<-4.45 320<Y3<1645 表 5 膨润土最优改良参数表
Table 5 Optimal parameters of bentonite improvement
推进速度/(cm·min-1) 膨润土泥浆浓度/% 膨润土泥浆掺入比/% 整体满意度极大值 1.5 7.8 23.7 0.718 2.0 7.8 24.9 0.702 2.5 7.6 25.5 0.678 3.0 8.0 27.0 0.649 3.5 7.8 27.6 0.610 -
[1] PEILA D, MARTINELLI D, TODARO C. Soil conditioning in EPB shield tunnelling-An overview of laboratory tests[J]. Geomechanics and Tunnelling, 2019, 12(5): 491-498. doi: 10.1002/geot.201900021
[2] 肖超, 阳军生, 王树英, 等. 土压平衡盾构改良渣土力学行为及其地层响应特征[J]. 中南大学学报(自然科学版), 2016, 47(7): 2432-2440. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201607034.htm XIAO Chao, YANG Jun-sheng, WANG Shu-ying, et al. Conditioned soils mechanical behavior of earth pressure balance shield tunneling and its impact on formation respons[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2432-2440. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201607034.htm
[3] TANG S, ZHANG X, LIU Q. Prediction and analysis of replaceable scraper wear of slurry shield TBM in dense sandy ground: a case study of Sutong GIL Yangtze River Crossing Cable Tunnel[J]. Tunnelling and Underground Space Technology, 2020, 95: 103090. doi: 10.1016/j.tust.2019.103090
[4] BARZEGARI G B, UROMEIHY A U, ZHAO J Z. Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects[J]. Tunnelling And Underground Space Technology, 2015, 48: 43-57. doi: 10.1016/j.tust.2014.10.010
[5] HUANG Z H, WANG C W, DONG J D. Conditioning experiment on sand and cobble soil for shield tunneling[J]. Tunnelling and Underground Space Technology, 2019, 87: 187-194. doi: 10.1016/j.tust.2019.02.011
[6] 姜厚停, 龚秋明, 杜修力. 卵石地层土压平衡盾构施工土体改良试验研究[J]. 岩土工程学报, 2013, 35(2): 284-292. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302014.htm JIANG Hou-ting, GONG Qiu-ming, DU Xiu-li. Experimental study on soil conditioning in cobble layer by use of earth pressure balanced machine[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 284-292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302014.htm
[7] 张润来, 宫全美, 周顺华, 等. 砂卵石地层土压平衡盾构施工渣土改良试验[J]. 同济大学学报(自然科学版), 2019, 47(5): 673-680. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201905012.htm ZHANG Run-lai, GONG Quan-mei, ZHOU Shun-hua, et al. Test on improvement of residual soil by EPB shield in sandy pebble stratum[J]. Journal of Tongji University(Natural Science), 2019, 47(5): 673-680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201905012.htm
[8] DING Y D Y, JIANG Y J Y, YANG Z Y Z. Soil conditioning of high water pressure sandy stratum for an EPB shield[J]. Journal of the Agromomy Faculty of Universidad del Zulia, 2019, 36(2): 215-229.
[9] WANG S W S, LU X L X, WANG X W X. Soil improvement of EPBS construction in high water pressure and high permeability sand stratum[J/OL]. Advances in Civil Engineering, 2019. doi: 10.1155/2019/4503219.
[10] BUDACH C, THEWES M. Application ranges of EPB shields in coarse ground based on laboratoryresearch[J]. Tunnelling and Underground Space Technology, 2015, 50: 296-304. doi: 10.1016/j.tust.2015.08.006
[11] 土工试验规程:SL237—1999[S]. 1999. Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
[12] 朱伟, 秦建设, 魏康林. 土压平衡盾构喷涌发生机理研究[J]. 岩土工程学报, 2004, 26(5): 589-593. doi: 10.3321/j.issn:1000-4548.2004.05.003 ZHU Wei, QIN Jian-she, WEI Kang-lin. Research on the mechanism of the spewing in the EPB shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 589-593. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.05.003
-
期刊类型引用(5)
1. 田晓丹,姜晓桢,殷友超,石泽译. 基于土工膜透声特性的膜下垫层渗透变形声波特征试验研究. 水利水电科技进展. 2025(02): 31-37 . 百度学术
2. 张宪雷,马仲阳,刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理. 岩土工程学报. 2024(11): 2333-2340 . 本站查看
3. 张宪雷,马仲阳,吴云云. 面膜堆石坝不同品种土工膜力学特性. 岩土工程学报. 2023(05): 940-952 . 本站查看
4. 徐国雷,张宪雷,马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理. 水电能源科学. 2022(12): 138-142 . 百度学术
5. 黄耀英,谢同,费大伟,包腾飞,颜剑. 基于测压管实测水位的王甫洲水利工程复合土工膜工作性态反馈. 岩土工程学报. 2021(03): 564-571 . 本站查看
其他类型引用(2)