Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

滇中引水工程香炉山隧洞地应力特征及其活动构造响应

张新辉, 付平, 尹健民, 刘元坤

张新辉, 付平, 尹健民, 刘元坤. 滇中引水工程香炉山隧洞地应力特征及其活动构造响应[J]. 岩土工程学报, 2021, 43(1): 130-139. DOI: 10.11779/CJGE202101015
引用本文: 张新辉, 付平, 尹健民, 刘元坤. 滇中引水工程香炉山隧洞地应力特征及其活动构造响应[J]. 岩土工程学报, 2021, 43(1): 130-139. DOI: 10.11779/CJGE202101015
ZHANG Xin-hui, FU Ping, YIN Jian-min, LIU Yuan-kun. In-situ stress characteristics and active tectonic response of Xianglushan tunnel of Middle Yunnan Water Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 130-139. DOI: 10.11779/CJGE202101015
Citation: ZHANG Xin-hui, FU Ping, YIN Jian-min, LIU Yuan-kun. In-situ stress characteristics and active tectonic response of Xianglushan tunnel of Middle Yunnan Water Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 130-139. DOI: 10.11779/CJGE202101015

滇中引水工程香炉山隧洞地应力特征及其活动构造响应  English Version

基金项目: 

国家重点研发计划项目 2016YFC0401803

国家重点研发计划项目 2016YFC0401801

详细信息
    作者简介:

    张新辉(1988— ),男,硕士,工程师,主要从事岩石力学试验方面的研究工作。E-mail: 547834903@qq.com

    通讯作者:

    张新辉, E-mail: 547834903@qq.com

  • 中图分类号: TU456

In-situ stress characteristics and active tectonic response of Xianglushan tunnel of Middle Yunnan Water Diversion Project

  • 摘要: 滇中引水工程香炉山隧洞埋深大、距离长且处于复杂的构造地质环境中。为查明其地应力分布特征,统计分析了隧洞沿线10个钻孔的水压致裂法地应力测试成果。3个主应力关系主要表现为SH>SV>Sh,反映了隧洞沿线以走滑性质为主的构造特征。工程区浅部地层的应力大小主要受地层岩性与断裂带影响。一方面坚硬岩体的水平主应力明显大于软质岩体;另一方面断裂带的发育致使隧洞沿线的应力水平相对较低,同时断裂带局部区间力学性质的差异导致浅部地层水平主应力呈现出较大离散性。香炉山隧洞最大水平主应力的测试方向主要分布在NNE—NEE向,与隧洞沿线一系列全新世活动断裂走向及区域构造主压应力方向趋于一致,响应了研究区震源机制解特征和楔形块体的运动特征。基于实测应力数据和断层滑动理论,隧洞沿线活动断裂目前处于相对稳定状态,而鹤庆-洱源断裂更为接近断层滑动的临界条件,随着应力的不断积累其稳定性情况值得进一步关注。
    Abstract: Xianglushan tunnel of Middle Yunnan Water Diversion Project is a deep buried and long distance tunnel in the complex tectonic geological environment. In order to find out the distribution characteristics of in-situ stress, the results of measured stress by hydraulic fracturing method in 10 boreholes along the tunnel are statistically analyzed. The three principal stress relationships are mainly expressed as SH>SV>Sh, which accords with the strike-slip tectonic characteristics along the tunnel. The in-situ stress of shallow stratum in the project area is mainly affected by the lithology and faults. On the one hand, the horizontal principal stress of hard rock mass is obviously greater than that of soft rock mass. On the other hand, the stress level along the tunnel is relatively lower due to the development of faults. Meanwhile, the difference of mechanical properties in the local section of fault zones makes the horizontal principal stress in shallow stratum discrete. The maximum horizontal principal stress direction of Xianglushan tunnel is distributed in NNE ~ NEE direction. And it is almost parallel to the strike of a series of Holocene active faults along the tunnel and the direction of regional tectonic principal compressive stress, which is in response to the characteristics of focal mechanism solution and wedge block movement in the study area. Based on the measured stress data and the fault slip theory, the active faults along Xianglushan tunnel are in a relatively stable state at present. Among them, Heqing-Eryuan fault is closer to the critical condition of fault sliding. Therefore, with the accumulation of stress in fault zone, the stability of Heqing-Eryuan fault deserves further attention.
  • 图  1   水平主应力随深度变化规律

    Figure  1.   Variation of horizontal principal stress with depth

    图  2   水平主应力侧压系数随深度变化规律

    Figure  2.   Variation of lateral pressure coefficient of horizontal principal stress with depth

    图  3   平均水平应力侧压系数随深度变化规律

    Figure  3.   Variation of lateral pressure coefficient of average horizontal stress with depth

    图  4   香炉山隧洞工程区及其周边活动断裂与最大水平主应力方向分布图

    Figure  4.   Distribution of active faults and maximum horizontal principal stress in Xianglushan tunnel and its surrounding areas

    图  5   香炉山隧洞最大水平主应力方向玫瑰花图

    Figure  5.   Rose diagram of maximum horizontal principal stress direction of Xianglushan tunnel

    图  6   震源机制解P轴分布图

    Figure  6.   P-axis distribution of focal mechanism solutions

    图  7   楔形块体滑移趋势示意图

    Figure  7.   Schematic diagram of wedge block slip trend

    图  8   研究区相对华南块体的GPS水平速度场(参考文献[19, 20])

    Figure  8.   GPS horizontal velocity fields of study area relative to South China block (Reference [19, 20])

    图  9   断层摩擦系数μ与有效主应力的相关性

    Figure  9.   Correlation between friction coefficient (μ) of faults and effective principal stress

    表  1   香炉山隧洞地应力测试结果表

    Table  1   In-situ stress test results of Xianglushan tunnel

    钻孔深度/m岩性SH/MPaSh/MPaSV/MPaαH /(°)
    XLZK2241.8绢云母板岩6.14.96.4
    247.8砂岩8.67.26.6N36°E
    251.4砂岩9.37.66.7
    259.9砂岩8.26.26.9
    265.9砂岩9.36.87.0N27°E
    283.9绢云母板岩7.96.67.5
    295.7绢云母板岩8.46.37.8
    303.0绢云母板岩8.15.88.0 
    XLZK4256.2角砾灰岩9.48.46.9N53°E
    292.5角砾灰岩11.58.67.9
    304.5角砾灰岩12.310.58.2
    316.8角砾灰岩12.910.58.6
    329.2角砾灰岩13.19.88.9
    341.5灰岩13.410.59.2
    354.2灰岩13.210.19.6
    366.8灰岩13.411.29.9N44°E
    379.2灰岩13.710.410.2 
    XLP3ZK2181.8粉砂质泥岩4.93.84.9
    253.7粉砂质泥岩7.04.96.8N55°E
    264.8粉砂质泥岩6.64.87.1
    272.2粉砂质泥岩6.95.07.3
    280.8粉砂质泥岩7.15.37.6
    311.5粉砂质泥岩8.05.88.4N63°E
    XLP3-1ZK3173.0粉砂岩5.54.14.7
    189.0粉砂岩6.74.55.1
    220.0粉砂岩7.25.25.9N65°E
    235.0粉砂岩9.15.96.3
    280.0粉砂质泥岩8.16.17.6
    331.0粉砂质泥岩8.26.98.9
    346.0粉砂质泥岩9.579.3N54°E
    XLZK10197.0白云质灰岩5.74.15.3
    225.2白云质灰岩6.25.66.1
    252.4白云质灰岩8.35.96.8
    267.5白云质灰岩10.57.57.2N35°E
    281.5白云质灰岩12.07.57.6
    522.5玄武岩13.89.714.1
    560.0玄武岩17.411.715.1N42°E
    XLZK11463.5泥质灰岩14.07.712.5
    551.7泥质灰岩15.58.914.9N33°E
    572.7泥质灰岩17.210.015.5
    602.6泥质灰岩18.210.616.3N29°E
    633.4泥质灰岩18.110.517.1
    663.3泥质灰岩18.911.317.9
    678.6泥质灰岩20.012.018.3
    708.5泥质灰岩19.411.819.1N40°E
    723.5泥质灰岩20.512.619.5 
    XLZK16501.5灰岩16.38.813.5
    524.6灰岩21.312.714.2N37°E
    544.0灰岩18.69.914.7
    590.0灰岩18.011.315.9
    636.1灰岩19.210.617.2N30°E
    690.4灰岩18.09.218.6
    708.5灰岩21.711.019.1N11°E
    835.2灰岩24.012.222.6
    850.0灰岩25.613.223.0N43°E
    XLZK17313.1白云质灰岩11.478.5
    325.5白云质灰岩10.76.78.8
    359.5白云质灰岩10.36.59.7N20°E
    395.1白云质灰岩10.46.810.7
    460.6白云质灰岩11.57.712.4
    491.8白云质灰岩14.49.413.3N29°E
    XLZK18281.8角砾灰岩9.65.37.6
    305.7角砾灰岩9.95.98.3N54°E
    319.9角砾灰岩11.86.68.6
    366.1角砾灰岩12.06.79.9N55°E
    417.9角砾灰岩13.37.611.3 
    XLZK25260.2白云质灰岩9.86.67.0
    287.9白云质灰岩10.15.87.8
    344.3白云质灰岩11.25.89.3
    380.2灰岩12.77.210.3
    398.3灰岩13.47.210.8N48°W
    419.2灰岩13.07.111.3
    437.6灰岩13.47.411.8
    478.6灰岩16.29.212.9N38°W
    SH 为最大水平主应力;Sh 为最小水平主应力;SV 为岩体上覆自重应力(SV = γH);αH为最大水平主应力方向。
    下载: 导出CSV
  • [1] 谢富仁, 陈群策, 崔效锋, 等. 中国大陆地壳应力环境研究[M]. 北京: 地质出版社, 2003.

    XIE Fu-ren, CHEN Qun-ce, CUI Xiao-feng, et al. Study on Crustal Stress Environment in Mainland China[M]. Beijing: Geological Publishing House, 2003. (in Chinese)

    [2] 长江勘测规划设计研究有限责任公司. 滇中引水工程可行性研究阶段香炉山隧洞线路比选地质专题研究报告[R]. 武汉: 长江勘测规划设计研究有限责任公司, 2013.

    Changjiang Survey Planning and Design Research Co., Ltd. Geological subject study report on route selection of Xianglushan tunnel in feasibility study stage of Yunnan diversion project[R]. Wuhan: Changjiang Survey Planning and Design Research Co., Ltd., 2013. (in Chinese)

    [3] 阚荣举, 张四昌, 晏凤桐, 等. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报, 1977, 20(2): 96-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197702001.htm

    KAN Rong-ju, ZHANG Si-chang, YAN Feng-tong, et al. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwest China[J]. Chinese Journal of Geophysics, 1977, 20(2): 96-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197702001.htm

    [4] 崔效锋, 谢富仁, 张红艳. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报, 2006, 28(5): 451-461. doi: 10.3321/j.issn:0253-3782.2006.05.001

    CUI Xiao-feng, XIE Fu-ren, ZHANG Hong-yan. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamics interest[J]. Acta Seismologica Sinica, 2006, 28(5): 451-461. (in Chinese) doi: 10.3321/j.issn:0253-3782.2006.05.001

    [5]

    BROWN E T, HOEK E. Technical note trends in relationships between measured in-situ stress and depth[J]. Int J Rock Mech Min Sci and Geomech Abstr, 1978, 15(4): 211-215. doi: 10.1016/0148-9062(78)91227-5

    [6] 赵德安, 陈志敏, 蔡小林, 等. 我国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1265-1271. doi: 10.3321/j.issn:1000-6915.2007.06.024

    ZHAO De-an, CHEN Zhi-min, CAI Xiao-lin, et al. Analysis of the distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1265-1271. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.06.024

    [7] 景锋, 盛谦, 张勇慧, 等. 不同地质成因岩石地应力分布规律的统计分析[J]. 岩土力学, 2008, 29(7): 1877-1883. doi: 10.3969/j.issn.1000-7598.2008.07.028

    JING Feng, SHENG Qian, ZHANG Yong-hui, et al. Statistical analysis of geostress distribution laws for different rocks[J]. Rock and Soil Mechanics, 2008, 29(7): 1877-1883. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.07.028

    [8] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 2003, 33(增刊): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm

    ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. Strong seismic activities and active blocks in mainland China[J]. Science in China (Series D), 2003, 33(S0): 12-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm

    [9]

    BYERLEE J D. Friction of rock[J]. Pure and Applied Geophysics, 1978, 116: 615-626. doi: 10.1007/BF00876528

    [10] 汤勇. 龙蟠—乔后断裂带晚第四纪活动速率研究[D]. 北京: 中国地震局地震预测研究所, 2014.

    TANG Yong. A Study on the Slip Rates of Longpan-Qiaohou Fault Zone in Late Quaternary[D]. Beijing: Institute of Earthquake Science, China Earthquake Administration, 2014. (in Chinese)

    [11] 许晶莉. 云南丽江—剑川断裂带活动性研究[D]. 成都: 成都理工大学, 2012.

    XU Jing-li. Study on the Activity of Lijiang-Jianchuan Fault Zone in Yunnan[D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese)

    [12] 魏永明, 魏显虎, 李德文, 等. 滇西北地区鹤庆—洱源断裂带遥感影像特征及活动性分析术[J]. 第四纪研究, 2017, 37(2): 234-249.

    WEI Yong-ming, WEI Xian-hu, LI De-wen, et al. Remote sensing imagery features and activity analyses of Heqing-Eryuan fault zone in the northwestern area of Yunnan province[J]. Quaternary Sciences, 2017, 37(2): 234-249. (in Chinese)

    [13] 丰成君, 陈群策, 李国歧, 等. 青藏高原东南缘丽江—剑川地区地应力测量与地震危险性[J]. 地质通报, 2014, 33(4): 524-534. doi: 10.3969/j.issn.1671-2552.2014.04.009

    FENG Cheng-jun, CHEN Qun-ce, LI Guo-qi, et al. In-situ stress measurement in Lijiang-Jianchuan area and tentative discussion on the seismic hazards on the southeastern margin of the Tibetan Plateau[J]. Geological Bulletin of China, 2014, 33(4): 524-534. (in Chinese) doi: 10.3969/j.issn.1671-2552.2014.04.009

    [14] 徐锡伟, 程国良, 于贵华, 等. 川滇菱形块体顺时针转动的构造学与古地磁学证据[J]. 地震地质, 2003, 25(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200301006.htm

    XU Xi-wei, CHENG Guo-liang, YU Gui-hua, et al. Tectonic and paleomagnetic evidence for the clockwise rotation of the Sichuan-Yunnan Rhombic Block[J]. Seismology and Geology, 2003, 25(1): 61-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200301006.htm

    [15]

    LEPOUP P H, HARRISON T M, RYERSON F J, et al. Structural, petrological and thermal evolution of a tertiary ductile strike slip shear zone, Diancangshan, Yunnan[J]. J Geophys Res, 1993, 98: 6715-6743.

    [16] 范柱国, 李峰, 谈树成, 等. 丽江—大理地区新构造运动特征及环境效应[J]. 大地构造与成矿学, 2002, 26(1): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200201001.htm

    FAN Zhu-guo, LI Feng, TAN Shu-cheng, et al. The characteristics and environment effects of geotectonic movement in the Lijiang-Dali region[J]. Geotectonic et Metallogenia, 2002, 26(1): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200201001.htm

    [17] 向宏发, 徐锡伟, 虢顺民, 等. 丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义—陆内活动地块横向构造的屏蔽作用[J]. 地震地质, 2002, 24(2): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200202005.htm

    XIANG Hong-fa, XU Xi-wei, GUO Shun-min, et al. Sinistral thrusting along the Lijiang-Xiaojinhe fault since quaternary and its geologic-tectonic significance-shielding effect of transverse structure of intracontinental active block[J]. Seismology and Geology, 2002, 24(2): 188-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200202005.htm

    [18] 韩源, 张靖. 滇西北地区活动断裂[M]. 北京: 地震出版社, 1990.

    HAN Yuan, ZHANG Jing. Active Faults in Northwest Yunnan[M]. Beijing: Seismological Press, 1990. (in Chinese)

    [19] 乔学军, 王琪, 杜瑞林. 川滇地区活动地块现今地壳形变特征[J]. 地球物理学报, 2004, 47(5): 805-811. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200405010.htm

    QIAO Xue-jun, WANG Qi, DU Rui-lin. Characteristics of current crustal deformation of active blocks in the Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 2004, 47(5): 805-811. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200405010.htm

    [20] 王阎昭, 王恩宁, 沈正康, 等. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学(D辑), 2008, 38(5): 582-597. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200805006.htm

    WANG Yan-zhao, WANG En-ning, SHEN Zheng-kang, et al. Inversion of present activity rate of main faults in Sichuan-Yunnan region based on GPS data constraints[J]. Science in China (Series D), 2008, 38(5): 582-597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200805006.htm

    [21] 邓起东, 张裕明, 许桂林, 等. 中国构造应力场特征及其与板块运动的关系[J]. 地震地质, 1979, 1(1): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ197901003.htm

    DENG Qi-dong, ZHANG Yu-ming, XU Gui-lin, et al. On the tectonic stress field in China and its relation to plate movement[J]. Seismology and Geology, 1979, 1(1): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ197901003.htm

    [22] 俞鸿年, 卢华复, 张庆龙, 等. 福建东南沿海中、新生代构造应力场的演化及其与板块运动的关系[J]. 南京大学学报(自然科学版), 1987, 23(3): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198703008.htm

    YU Hong-nian, LU Hua-fu, ZHANG Qing-long, et al. The evolution of the meso-cenozoc structural stress field in the southeastern Fu Jian coastal region and its bearing on the plate movement[J]. Journal of Nanjing University (Natural Science Edition), 1987, 23(3): 473-484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198703008.htm

    [23] 苏恺之, 李方全, 张伯崇, 等. 长江三峡坝区地壳应力与孔隙水压力综合研究[M]. 北京: 地震出版社, 1996.

    SU Kai-zhi, LI Fang-quan, ZHANG Bo-chong, et al. Integrated research on the crustal stress and pore water pressure at the dam site of the Three Gorges[M]. Beijing: Earthquake Press, 1996. (in Chinese)

    [24] 王成虎, 宋成科, 郭启良, 等. 利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J]. 地球物理学报, 2014, 57(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401010.htm

    WANG Cheng-hu, SONG Cheng-ke, GUO Qi-liang, et al. Stress build-up in the shallow crust before the Lushan Earth quake based on the in-situ stress measurements[J]. Chinese Journal of Geophysics, 2014, 57(1): 102-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401010.htm

图(9)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-11
  • 网络出版日期:  2022-12-04
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回