• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

尾矿库溃坝尾砂流下泄冲击力特性试验研究

吴帅峰, 严俊, 蔡红, 魏迎奇, 杜继芳, 刘传鹏

吴帅峰, 严俊, 蔡红, 魏迎奇, 杜继芳, 刘传鹏. 尾矿库溃坝尾砂流下泄冲击力特性试验研究[J]. 岩土工程学报, 2020, 42(S2): 219-225. DOI: 10.11779/CJGE2020S2039
引用本文: 吴帅峰, 严俊, 蔡红, 魏迎奇, 杜继芳, 刘传鹏. 尾矿库溃坝尾砂流下泄冲击力特性试验研究[J]. 岩土工程学报, 2020, 42(S2): 219-225. DOI: 10.11779/CJGE2020S2039
WU Shuai-feng, YAN Jun, CAI Hong, WEI Ying-qi, DU Ji-fang, LIU Chuan-peng. Experimental study on characteristics of impact force of tailing flow under dam break of tailing reservoir[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 219-225. DOI: 10.11779/CJGE2020S2039
Citation: WU Shuai-feng, YAN Jun, CAI Hong, WEI Ying-qi, DU Ji-fang, LIU Chuan-peng. Experimental study on characteristics of impact force of tailing flow under dam break of tailing reservoir[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 219-225. DOI: 10.11779/CJGE2020S2039

尾矿库溃坝尾砂流下泄冲击力特性试验研究  English Version

基金项目: 

国家重点研发计划项目 2017YFC0804607

国家自然科学基金项目 U19A2049

详细信息
    作者简介:

    吴帅峰(1988— ),男,博士(后),高级工程师,主要从事大坝岩土工程与冲击动力学等方面的研究工作。E-mail:wusf@iwhr.com

    通讯作者:

    蔡红, E-mail:caihong@iwhr.com

  • 中图分类号: TU43

Experimental study on characteristics of impact force of tailing flow under dam break of tailing reservoir

  • 摘要: 尾矿库溃坝下泄尾砂流冲击力的计算目前还未有成熟的模型或计算方法,而直接采用泥石流的经验公式或现有的水力学计算模型并修改相应的参数不能真实反映尾砂流的冲力特性。采用尾砂流模型槽装置,开展了不同密度的尾砂浆体、不同流速、不同埋深条件下冲击力的演化特征。试验结果表明:冲击力在时间分布上受密度的影响规律为,密度越大最大冲击力出现的时间越早;冲击力在纵向空间上可分为两段,一段为液面以下的埋深范围内,冲击力随深度呈线性分布,另一段为涌高部分,冲击力呈对数型快速衰减;尾砂流冲击力与流速、密度和埋深直接相关,不同密度下流速与冲击力呈幂函数相关,同时密度越大冲击力越大,呈幂函数相关性,埋深与冲击力呈线性关系。并以此建立了涵盖了流速、密度和埋深3因素的冲击力模型,并设定了3个参数,分别为扰流系数k1受密度影响的冲击力调整系数α和受埋深对冲击力的调整系数k2,该模型能综合反映3因素的影响,通过验证表明了模型的合理性及参数物理意义的正确性,可为相关研究和工程应用提供一定的理论参考。
    Abstract: At present, there is no mature model or method for the calculation of the impact force of tailing flow discharged from the dam break of tailing pond. Instead, the empirical formula for debris flow or the existing hydraulic model are directly used, and the corresponding parameters are modified. This method can not truly reflect the impact characteristics of tailing flow. The evolution characteristics of impact force under different densities of tailing slurry, different velocities and different depths of impact are studied by using the tailing flow model groove devices. The test results show that the impact force is affected by density shadow in time distribution. The higher the density is, the earlier the maximum impact force appears. In the longitudinal space, the impact force can be divided into two parts. One is the buried depth below the liquid level, the impact force is linearly distributed with the depth, the other is the surge height part. The impact force is a logarithmic fast attenuation. The impact force of tailing flow is directly related to velocity, density and buried depth, and the velocity and impact force are power function-related under different densities. At the same time, the greater the density is, the greater the impact force is the power function related. The buried depth and impact force are linear relationship. Based on this, a model for impact force covering three factors of the velocity, density and buried depth is established, and three parameters are set up, namely, the coefficient of turbulence k1, the coefficient of impact force adjustment α affected by the density, and the coefficient of impact force adjustment k2 affected by the buried depth. The model can comprehensively reflect the influences of three factors. The rationality of the model and the correctness of the physical meaning of the parameters are verified, which may provide some theoretical reference for the related researches and engineering applications
  • 图  1   试验装置设计图

    Figure  1.   Design drawing of test devices

    图  2   试验装置加工图

    Figure  2.   Processing drawing of test devices

    图  3   襄汾尾矿砂颗粒级配曲线

    Figure  3.   Grain-size distribution curves of Xiangfen tailings particles

    图  4   清水冲击力与流速间的关系

    Figure  4.   Relationship between impact force of clean water and velocity

    图  5   不同密度下的冲击力时程曲线

    Figure  5.   Time-history curves of impact force under different densities

    图  6   深度与动压力间的关系

    Figure  6.   Relationship between depth and dynamic pressure

    图  7   不同密度下流速与冲击力间的关系

    Figure  7.   Relationship between velocity and impact force under different densities

    图  8   不同流速下密度与冲击力间的关系

    Figure  8.   Relationship between density and impact force under different velocities

    图  9   埋深与冲击力间的关系

    Figure  9.   Relationship between buried depth and impact force

    图  10   模型参数变化对曲线的影响

    Figure  10.   Influences of model parameters on curves

    图  11   冲击模型拟合曲线

    Figure  11.   Fitting curves of impact model

    表  1   尾矿砂粒径累计含量

    Table  1   Accumulated contents of characteristic particle size of tailings sand  (%)

    包线类型颗粒粒径/mm
    20.50.250.0750.0050.002
    综合细包线1001007524177
    综合粗包线97845015102
    综合平均线100905720125
    下载: 导出CSV

    表  2   尾砂流试验控制参数

    Table  2   Control parameters of tailings flow tests

    密度/(g·cm-3)水砂比含砂量/(g·cm-3)重度/(kN·m-3)流速/(m·s-1)最大埋深/cm
    1.01∶009.800.5~320
    1.15.58∶10.1710.780.2~1.520
    1.22.59∶10.3311.760.2~1.520
    1.31.59∶10.5012.740.2~1.520
    1.41.09∶10.6713.720.2~1.520
    1.50.80∶10.8414.700.2~1.520
    下载: 导出CSV

    表  3   尾砂流冲击特性试验结果

    Table  3   Test results of impact characteristics of tailings flow

    密度/(g·cm-3)流速/(m·s-1)动压力/kPa
    5 cm10 cm15 cm20 cm
    1.10.300.330.781.231.82
    0.320.450.860.961.58
    0.390.521.081.071.62
    0.500.611.121.221.68
    0.560.721.271.271.93
    0.701.001.421.522.17
    0.901.512.092.212.71
    1.102.222.752.873.39
    1.152.432.983.093.65
    1.20.230.480.691.132.17
    0.300.640.941.412.15
    0.330.831.131.992.52
    0.501.121.662.102.78
    0.651.442.022.353.10
    0.711.752.252.883.46
    0.902.222.833.163.88
    1.112.973.483.904.72
    1.243.624.754.585.40
    1.30.300.811.091.372.72
    0.501.491.892.203.35
    0.702.112.753.203.68
    0.792.322.943.484.11
    0.912.923.394.184.62
    1.113.774.205.015.58
    1.214.615.206.496.25
    1.40.220.851.241.561.77
    0.301.171.671.942.11
    0.371.502.062.232.67
    0.502.222.653.093.32
    0.693.273.954.544.98
    1.50.301.482.102.693.04
    0.502.763.464.284.54
    0.613.173.914.676.08
    0.714.214.755.436.92
    0.935.976.557.478.58
    1.056.967.588.069.87
    1.128.288.819.5011.97
    下载: 导出CSV

    表  4   冲击模型拟合结果取值

    Table  4   Values of fitting results impact model

    密度ρ/(g·cm-3)埋深h/mk1αk2相关系数
    1.10.051.657.240.690.99
    1.20.101.805.470.690.97
    1.30.151.924.810.660.96
    1.40.202.434.280.690.97
    1.50.202.654.070.670.97
    下载: 导出CSV

    表  5   文献实验结果与模型计算结果对比

    Table  5   Comparison between model results and experimental data of Reference [12]

    序号试验数据
    密度/(g·cm-3)流速/(m·s-1)平均埋深/m冲击力/kPa
    11.73.850.0965.48
    21.83.740.0959.14
    31.93.570.0964.75
    42.03.050.0963.15
    52.12.780.0967.75
    序号模型参数及结果
    k1αk2冲击力/kPa
    12.812.170.6866.91
    22.911.830.6960.79
    33.041.810.6863.07
    43.252.050.6863.82
    53.382.210.6868.60
    下载: 导出CSV
  • [1] 张家荣, 刘建林, 朱记伟. 我国尾矿库事故统计分析及对策建议[J]. 武汉理工大学学报(信息与管理工程版), 2016, 38(6): 682-685. https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201606009.htm

    ZHANG Jia-rong, LIU Jian-lin, ZHU Ji-wei. Statistical analysis and countermeasures of tailings accident in China[J]. Journal of Wuhan University of Technology, 2016, 38(6): 682-685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201606009.htm

    [2] 吴宗之, 梅国栋. 尾矿库事故统计分析及溃坝成因研究[J]. 中国安全科学学报, 2014, 24(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201409014.htm

    WU Zong-zhi, MEI Guo-dong. Statistical analysis of tailings pond accidents and cause analysis of dam failure[J]. China Safety Science Journal, 2014, 24(9): 70-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201409014.htm

    [3] 闪淳昌, 张振东, 钟开斌, 等. 襄汾“9·8”特别重大尾矿库溃坝事故处置过程回顾与总结[J]. 中国应急管理, 2011(10): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201110008.htm

    SHAN Chun-chang, ZHANG Zhen-dong, ZHONG Kai-bin, et al. Review and summary of the disposal process of Xiangfen "9.8" extremely serious tailings dam break accident[J]. China Emergency Management, 2011(10): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201110008.htm

    [4] 殷跃平. 山西襄汾县塔山矿区尾矿溃决泥流灾难[J]. 中国地质灾害与防治学报, 2008, 19(4): 70-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200804014.htm

    YIN Yue-ping. Debris flow disaster caused by tailings outburst in Tashan mining area, Xiangfen County, Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(4): 70-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200804014.htm

    [5]

    HU Kai-heng, CUI Peng, GE Yong-gang. Building destruction patterns by august 8, 2010 Debris flow in Zhouqu, Western China[J]. Journal of Mountain Science, 2012, 30(4): 484-490. doi: 10.3969/j.issn.1008-2786.2012.04.015

    [6]

    ZOU Qiang, GUO Xiao-jun, ZHU Xing-hua, et al. Hazard characteristics and causes of “7·10 ” debris flow along highways in the upper reaches of minjiang riverhazard characteristics and causes of “7·10 ” debris flow along highways in the upper reaches of minjiang river[J]. Journal of Mountain Science, 2014(6): 747-753.

    [7]

    IVERSON R M. Scaling and design of land slide and debris-flowexperiments[J]. Geomorphology, 2015, 244: 9-20.

    [8] 尹光志, 敬小非, 魏作安, 等. 尾矿坝溃坝相似模拟试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3830-3838. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2056.htm

    YIN Guang-zhi, JING Xiao-fei, WEI Zuo-an, et al. Experimental study of similar simulation of tailings dam-break[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3830-3838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2056.htm

    [9]

    JING F X. Research on the movement mechanism of pulp surging from tailings dam-break[J]. Advanced Materials Research, 2012, 516-517: 997-1000.

    [10]

    WU T, QIN J. Experimental study of a tailings impoundment dam failure due to overtopping[J]. Mine Water & the Environment, 2018, 37(2): 272-280.

    [11]

    LIU L, ZHANG H W, ZHONG D Y, et al. Research on tailings dam break due to overtopping[J]. Journal of Hydraulic Engineering, 2014, 45(6): 675-681.

    [12] 刘道川, 游勇, 杜杰, 等. 泥石流冲击力的时空分布特征[J]. 工程科学与技术, 2019, 51(3): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903003.htm

    LIU Dao-chuan, YOU Yong, DU JIE, et al. Spatio-temporal distribution of the impact force of debris flow[J]. Advanced Engineering Ences, 2019, 51(3): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903003.htm

图(11)  /  表(5)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  24
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回