Experimental study on characteristics of impact force of tailing flow under dam break of tailing reservoir
-
摘要: 尾矿库溃坝下泄尾砂流冲击力的计算目前还未有成熟的模型或计算方法,而直接采用泥石流的经验公式或现有的水力学计算模型并修改相应的参数不能真实反映尾砂流的冲力特性。采用尾砂流模型槽装置,开展了不同密度的尾砂浆体、不同流速、不同埋深条件下冲击力的演化特征。试验结果表明:冲击力在时间分布上受密度的影响规律为,密度越大最大冲击力出现的时间越早;冲击力在纵向空间上可分为两段,一段为液面以下的埋深范围内,冲击力随深度呈线性分布,另一段为涌高部分,冲击力呈对数型快速衰减;尾砂流冲击力与流速、密度和埋深直接相关,不同密度下流速与冲击力呈幂函数相关,同时密度越大冲击力越大,呈幂函数相关性,埋深与冲击力呈线性关系。并以此建立了涵盖了流速、密度和埋深3因素的冲击力模型,并设定了3个参数,分别为扰流系数k1受密度影响的冲击力调整系数α和受埋深对冲击力的调整系数k2,该模型能综合反映3因素的影响,通过验证表明了模型的合理性及参数物理意义的正确性,可为相关研究和工程应用提供一定的理论参考。Abstract: At present, there is no mature model or method for the calculation of the impact force of tailing flow discharged from the dam break of tailing pond. Instead, the empirical formula for debris flow or the existing hydraulic model are directly used, and the corresponding parameters are modified. This method can not truly reflect the impact characteristics of tailing flow. The evolution characteristics of impact force under different densities of tailing slurry, different velocities and different depths of impact are studied by using the tailing flow model groove devices. The test results show that the impact force is affected by density shadow in time distribution. The higher the density is, the earlier the maximum impact force appears. In the longitudinal space, the impact force can be divided into two parts. One is the buried depth below the liquid level, the impact force is linearly distributed with the depth, the other is the surge height part. The impact force is a logarithmic fast attenuation. The impact force of tailing flow is directly related to velocity, density and buried depth, and the velocity and impact force are power function-related under different densities. At the same time, the greater the density is, the greater the impact force is the power function related. The buried depth and impact force are linear relationship. Based on this, a model for impact force covering three factors of the velocity, density and buried depth is established, and three parameters are set up, namely, the coefficient of turbulence k1, the coefficient of impact force adjustment α affected by the density, and the coefficient of impact force adjustment k2 affected by the buried depth. The model can comprehensively reflect the influences of three factors. The rationality of the model and the correctness of the physical meaning of the parameters are verified, which may provide some theoretical reference for the related researches and engineering applications
-
Keywords:
- tailings reservoir /
- dam break /
- tailing flow /
- impact force /
- model test
-
-
表 1 尾矿砂粒径累计含量
Table 1 Accumulated contents of characteristic particle size of tailings sand
(%) 包线类型 颗粒粒径/mm 2 0.5 0.25 0.075 0.005 0.002 综合细包线 100 100 75 24 17 7 综合粗包线 97 84 50 15 10 2 综合平均线 100 90 57 20 12 5 表 2 尾砂流试验控制参数
Table 2 Control parameters of tailings flow tests
密度/(g·cm-3) 水砂比 含砂量/(g·cm-3) 重度/(kN·m-3) 流速/(m·s-1) 最大埋深/cm 1.0 1∶0 0 9.80 0.5~3 20 1.1 5.58∶1 0.17 10.78 0.2~1.5 20 1.2 2.59∶1 0.33 11.76 0.2~1.5 20 1.3 1.59∶1 0.50 12.74 0.2~1.5 20 1.4 1.09∶1 0.67 13.72 0.2~1.5 20 1.5 0.80∶1 0.84 14.70 0.2~1.5 20 表 3 尾砂流冲击特性试验结果
Table 3 Test results of impact characteristics of tailings flow
密度/(g·cm-3) 流速/(m·s-1) 动压力/kPa 5 cm 10 cm 15 cm 20 cm 1.1 0.30 0.33 0.78 1.23 1.82 0.32 0.45 0.86 0.96 1.58 0.39 0.52 1.08 1.07 1.62 0.50 0.61 1.12 1.22 1.68 0.56 0.72 1.27 1.27 1.93 0.70 1.00 1.42 1.52 2.17 0.90 1.51 2.09 2.21 2.71 1.10 2.22 2.75 2.87 3.39 1.15 2.43 2.98 3.09 3.65 1.2 0.23 0.48 0.69 1.13 2.17 0.30 0.64 0.94 1.41 2.15 0.33 0.83 1.13 1.99 2.52 0.50 1.12 1.66 2.10 2.78 0.65 1.44 2.02 2.35 3.10 0.71 1.75 2.25 2.88 3.46 0.90 2.22 2.83 3.16 3.88 1.11 2.97 3.48 3.90 4.72 1.24 3.62 4.75 4.58 5.40 1.3 0.30 0.81 1.09 1.37 2.72 0.50 1.49 1.89 2.20 3.35 0.70 2.11 2.75 3.20 3.68 0.79 2.32 2.94 3.48 4.11 0.91 2.92 3.39 4.18 4.62 1.11 3.77 4.20 5.01 5.58 1.21 4.61 5.20 6.49 6.25 1.4 0.22 0.85 1.24 1.56 1.77 0.30 1.17 1.67 1.94 2.11 0.37 1.50 2.06 2.23 2.67 0.50 2.22 2.65 3.09 3.32 0.69 3.27 3.95 4.54 4.98 1.5 0.30 1.48 2.10 2.69 3.04 0.50 2.76 3.46 4.28 4.54 0.61 3.17 3.91 4.67 6.08 0.71 4.21 4.75 5.43 6.92 0.93 5.97 6.55 7.47 8.58 1.05 6.96 7.58 8.06 9.87 1.12 8.28 8.81 9.50 11.97 表 4 冲击模型拟合结果取值
Table 4 Values of fitting results impact model
密度ρ/(g·cm-3) 埋深h/m k1 α k2 相关系数 1.1 0.05 1.65 7.24 0.69 0.99 1.2 0.10 1.80 5.47 0.69 0.97 1.3 0.15 1.92 4.81 0.66 0.96 1.4 0.20 2.43 4.28 0.69 0.97 1.5 0.20 2.65 4.07 0.67 0.97 表 5 文献实验结果与模型计算结果对比
Table 5 Comparison between model results and experimental data of Reference [12]
序号 试验数据 密度/(g·cm-3) 流速/(m·s-1) 平均埋深/m 冲击力/kPa 1 1.7 3.85 0.09 65.48 2 1.8 3.74 0.09 59.14 3 1.9 3.57 0.09 64.75 4 2.0 3.05 0.09 63.15 5 2.1 2.78 0.09 67.75 序号 模型参数及结果 k1 α k2 冲击力/kPa 1 2.81 2.17 0.68 66.91 2 2.91 1.83 0.69 60.79 3 3.04 1.81 0.68 63.07 4 3.25 2.05 0.68 63.82 5 3.38 2.21 0.68 68.60 -
[1] 张家荣, 刘建林, 朱记伟. 我国尾矿库事故统计分析及对策建议[J]. 武汉理工大学学报(信息与管理工程版), 2016, 38(6): 682-685. https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201606009.htm ZHANG Jia-rong, LIU Jian-lin, ZHU Ji-wei. Statistical analysis and countermeasures of tailings accident in China[J]. Journal of Wuhan University of Technology, 2016, 38(6): 682-685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC201606009.htm
[2] 吴宗之, 梅国栋. 尾矿库事故统计分析及溃坝成因研究[J]. 中国安全科学学报, 2014, 24(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201409014.htm WU Zong-zhi, MEI Guo-dong. Statistical analysis of tailings pond accidents and cause analysis of dam failure[J]. China Safety Science Journal, 2014, 24(9): 70-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201409014.htm
[3] 闪淳昌, 张振东, 钟开斌, 等. 襄汾“9·8”特别重大尾矿库溃坝事故处置过程回顾与总结[J]. 中国应急管理, 2011(10): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201110008.htm SHAN Chun-chang, ZHANG Zhen-dong, ZHONG Kai-bin, et al. Review and summary of the disposal process of Xiangfen "9.8" extremely serious tailings dam break accident[J]. China Emergency Management, 2011(10): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201110008.htm
[4] 殷跃平. 山西襄汾县塔山矿区尾矿溃决泥流灾难[J]. 中国地质灾害与防治学报, 2008, 19(4): 70-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200804014.htm YIN Yue-ping. Debris flow disaster caused by tailings outburst in Tashan mining area, Xiangfen County, Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(4): 70-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200804014.htm
[5] HU Kai-heng, CUI Peng, GE Yong-gang. Building destruction patterns by august 8, 2010 Debris flow in Zhouqu, Western China[J]. Journal of Mountain Science, 2012, 30(4): 484-490. doi: 10.3969/j.issn.1008-2786.2012.04.015
[6] ZOU Qiang, GUO Xiao-jun, ZHU Xing-hua, et al. Hazard characteristics and causes of “7·10 ” debris flow along highways in the upper reaches of minjiang riverhazard characteristics and causes of “7·10 ” debris flow along highways in the upper reaches of minjiang river[J]. Journal of Mountain Science, 2014(6): 747-753.
[7] IVERSON R M. Scaling and design of land slide and debris-flowexperiments[J]. Geomorphology, 2015, 244: 9-20.
[8] 尹光志, 敬小非, 魏作安, 等. 尾矿坝溃坝相似模拟试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3830-3838. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2056.htm YIN Guang-zhi, JING Xiao-fei, WEI Zuo-an, et al. Experimental study of similar simulation of tailings dam-break[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3830-3838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2056.htm
[9] JING F X. Research on the movement mechanism of pulp surging from tailings dam-break[J]. Advanced Materials Research, 2012, 516-517: 997-1000.
[10] WU T, QIN J. Experimental study of a tailings impoundment dam failure due to overtopping[J]. Mine Water & the Environment, 2018, 37(2): 272-280.
[11] LIU L, ZHANG H W, ZHONG D Y, et al. Research on tailings dam break due to overtopping[J]. Journal of Hydraulic Engineering, 2014, 45(6): 675-681.
[12] 刘道川, 游勇, 杜杰, 等. 泥石流冲击力的时空分布特征[J]. 工程科学与技术, 2019, 51(3): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903003.htm LIU Dao-chuan, YOU Yong, DU JIE, et al. Spatio-temporal distribution of the impact force of debris flow[J]. Advanced Engineering Ences, 2019, 51(3): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903003.htm