DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios
-
摘要: 深部复合岩体隧道开挖过程中,抗压强度比是影响围岩稳定的重要因素。引入考虑胶结尺寸的微观接触模型,采用二维离散元方法对深部上软下硬复合岩体隧道开挖进行了数值模拟,分析了强度比对围岩胶结破坏、最大主应力及扰动区的影响。结果表明,随着抗压强度比的增大,隧道开挖引起的围岩胶结破坏率与扰动区逐渐增大,胶结破坏形式以拉剪破坏为主;最大主应力沿围岩环向呈下垂的滴水状分布,沿径向在软岩中先减小后增大,在硬岩中逐渐增大;随着抗压强度比的增大,最大主应力沿径向在硬岩区变化幅度减小,在软岩区变化幅度增大。Abstract: The strength ratio is an important factor affecting the stability of the surrounding rock during tunnel excavation of deeply-situated composite rock mass. A size-dependent bond contact model is implemented to the software of the two-dimensional distinct element method (DEM) to simulate the tunnel excavation of deeply-situated up-soft/low-hard composite rock mass. The influences of strength ratio on bond breakage, the maximum principal stress and disturbance zone of the surrounding rock are investigated. The results show that the bond breakage ratio and the disturbed area ratio caused by tunnel excavation gradually increase with the increase of strength ratio of composite rock mass, and the bond breakage is mainly caused by bond tensile failure. The maximum principal stress is distributed in teardrop shape in the circumferential direction of the surrounding rock, while in the radial direction it decreases firstly and then increases in the soft rock and increases in the hard rock. Moreover, in the radial direction, with the increase of the strength ratio, the variation range of the maximum principal stress decreases in the hard rock but increases in the soft rock.
-
-
表 1 岩样微观参数
Table 1 Microscopic parameters of rock specimens
岩石 类型 颗粒部分 胶结部分 ρ颗粒密度/(kg·m-3) kn颗粒法向刚度/(N·m-1) ks颗粒切向刚度/(N·m-1) μ颗粒摩擦系数 β颗粒抗转动系数 hmax最大胶结厚度/m σt胶结拉伸强度/Pa σc胶结压缩强度/Pa Eb胶结弹性模量/N sp胶结延伸率 花岗岩 2700 6.50×1010 4.33×1010 1.0 1.5 1.30×104 1.00×109 3.00×1010 3.75×109 0.15 大理岩 2700 3.10×1010 2.05×1010 1.0 1.5 1.30×104 1.60×109 1.07×1010 1.07×109 0.15 绿片岩 2700 9.00×109 6.00×109 0.3 0.5 1.30×104 1.50×108 2.50×109 2.50×108 0.15 灰屑岩 2700 9.00×108 3.6×108 0.7 0.6 1.30×104 2.18×107 2.30×108 1.10×107 0.15 表 2 岩石宏观参数
Table 2 Macroscopic parameters of rocks
参数 弹性模量E/GPa 泊松比μ 巴西劈裂强度σt/MPa 单轴抗压强度σc/MPa 黏聚力c/MPa 内摩擦角φ/(°) 花岗岩 69.0 0.260 16.7 200.00 50.00 48.00 大理岩 30.0 0.210 20.0 101.24 24.60 35.23 绿片岩 3.54 0.360 1.00 19.47 4.47 25.26 灰屑岩 0.29 0.300 0.34 2.15 0.60 29.00 表 3 DEM试样宏观力学参数
Table 3 Macroscopic mechanical parameters of DEM specimens
参数 弹性模量E/GPa 泊松比μ 巴西劈裂强度σt/MPa 单轴抗压强度σc/MPa 黏聚力c/MPa 内摩擦角φ/(°) 花岗岩 68.070 0.254 18.360 198.200 43.000 40.41 大理岩 29.065 0.243 15.100 105.940 28.200 34.23 绿片岩 3.730 0.359 0.978 22.671 7.900 23.22 灰屑岩 0.295 0.440 0.325 2.040 0.646 30.10 表 4 不同抗压强度比深部复合岩体
Table 4 Composite rock mass with different strength ratios
复合岩层组合 上部 下部 抗压强度比(上∶下) 具体比值 组合一 绿片岩 花岗岩 22.671∶198.2 0.114 组合二 灰屑岩 花岗岩 2.04∶198.2 0.010 组合三 绿片岩 大理岩 22.671∶105.94 0.214 组合四 灰屑岩 大理岩 2.04∶105.94 0.019 表 5 最终胶结破坏率及对应时步
Table 5 Final bond breakage rates and corresponding time steps
组合 花岗岩-灰屑岩 大理岩-灰屑岩 花岗岩-绿片岩 大理岩-绿片岩 时步 123301 213300 4100 9100 胶结破坏率/% 0.0899 0.1070 0.00143 0.00315 -
[1] 高文艺. 深部复合地层TBM隧道变形时空演化规律研究[D]. 徐州: 中国矿业大学, 2015. GAO Wen-yi. Study on Space-time Evolution Laws of Surrounding Rockmass Deformation in Deep Mixed Strata Tunnel Excavated by TBM[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
[2] 黄锋, 周洋, 李天勇, 等. 软硬互层岩体力学特性及破坏形态的室内试验研究[J/OL]. 煤炭学报: 1-10[2020-03-17]. doi: 10.13225/j.cnki.jccs.2019.1388. [3] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
[4] 蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
[5] 王志伟, 乔春生, 宋超业. 上软下硬岩质地层浅埋大跨隧道松动压力计算[J]. 岩土力学, 2014, 35(8): 2342-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408030.htm WANG Zhi-wei, QIAO Chun-sheng, SONG Chao-ye. Calculation method of relaxation pressure of shallow large span tunnel in up-soft/low-hard rock stratum[J]. Rock and Soil Mechanics, 2014, 35(8): 2342-2352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408030.htm
[6] JIANG M J, ZHANG N, CUI L, et al. A size-dependent bond failure criterion for cemented granules based on experimental studies[J]. Computers and Geotechnics, 2015, 69: 182-198. doi: 10.1016/j.compgeo.2015.05.007
[7] JIANG M J, LIU W, XI B L, et al. Preliminary DEM analysis on micro-mechanical behavior of the composite cemented granules under complex stress conditions[C]//Proceedings of the 7th International Conference on Discrete Element Methods, 2016, Singapore.
[8] 张春深, 陈祥荣, 侯靖, 等. 锦屏二级水电站深埋大理岩力学特性研究[J]. 岩石力学与工程学报, 2010, 29(10): 1999-2009. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010009.htm ZHANG Chun-shen, CHEN Xiang-rong, HOU Jing, et al. Study of mechanical behavior of deep-buried marble at jinping hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1999-2009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010009.htm
[9] MARTIN D C. The strength of massive Lac du Bonnet Granite Around Underground Opeanings[D]. Winnipeg: University of Manitoba, 1993.
[10] 黄书岭. 高应力下脆性岩石的力学模型与工程应用研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2008. HUANG Shu-ling. Study on Mechanical Model of Brittle Rock under High Stress Condition and Its Engineering Applications[D]. Wuhan: Graduateschool of the Chinese Academy of Sciences (Wuhan Institute of Geotechnical Mechanics), 2008. (in Chinese)
[11] 吕品. 锦屏水电站绿片岩段扩挖及落底开挖稳定研究[D]. 大连: 大连理工大学, 2011. LÜ Pin. The Research of Enlarged Excavation and Surrounding Rock Stability in The Green Schist Area of Jinping Hydropower Station[D]. Dalian: Dalian University of Technology, 2011. (in Chinese)
[12] CIANTIA M O, CASTELLANZA R, PRISCO C D. Experimental study on the water-induced weakening of calcarenites[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 441-461. doi: 10.1007/s00603-014-0603-z
[13] PARMA M, NOVA R. Effects of bond crushing on the settlements of shallow foundations on soft rocks[J]. Géotechnique, 2011, 61(3): 247-261. doi: 10.1680/geot.7.00183
[14] 杨开新, 蒋明镜, 陈有亮, 等. 不同岩性下TBM滚刀破岩过程离散元分析[J]. 水资源与水工程学报, 2019, 30(2): 198-204, 211. YANG Kai-xin, JIANG Ming-jing, CHEN You-liang, et al. Discrete element method analysis on rock breaking process induced by TBM cutters under different lithologies[J]. Journal of Water Resources and Water Engineering, 2019, 30(2): 198-204, 211. (in Chinese)
[15] 吴渤. 层状岩体隧道围岩扰动区演化与锚固机理研究[D]. 武汉: 中国地质大学, 2016. WU Bo. Study on disturbance zone evolution and anchoring mechanism of surrounding rock in layered rock tunnel[D]. Wuhan: China University of Geosciences, 2016. (in Chinese)
[16] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
[17] 陈贺. 岩石宏微观力学特性及高陡岩质边坡的离散元数值模拟[D]. 上海: 同济大学, 2013. CHEN He. Macroscopic and Microscopic Mechanical Properties of Rocks and Discrete Element Numerical Simulation of High-Steep Rock Slopes[D]. Shanghai: Tongji University, 2013. (in Chinese)
[18] 蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002. CAI Mei-feng, Rock Mechanics and Engineering[M]. Beijing: Science Press, 2002. (in Chinese)
[19] 赵瑜, 卢义玉, 陈浩. 深埋隧道三心拱洞室平面应变模型试验研究[J]. 土木工程学报, 2010, 43(3): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201003015.htm ZHAO Yu, LU Yi-yu, CHEN Hao. A plane strain modeling study of a three-center arch for deep tunnels[J]. China Civil Engineering Journal, 2010, 43(3): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201003015.htm
[20] JIANG M J, YIN Z Y. Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method[J]. Tunnelling and Underground Space Technology, 2012, 32(6): 251-259.