• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

深部复合岩体隧道开挖离散元模拟

蒋明镜, 王华宁, 李光帅, 廖优斌, 陈有亮, 卫超群

蒋明镜, 王华宁, 李光帅, 廖优斌, 陈有亮, 卫超群. 深部复合岩体隧道开挖离散元模拟[J]. 岩土工程学报, 2020, 42(S2): 20-25. DOI: 10.11779/CJGE2020S2004
引用本文: 蒋明镜, 王华宁, 李光帅, 廖优斌, 陈有亮, 卫超群. 深部复合岩体隧道开挖离散元模拟[J]. 岩土工程学报, 2020, 42(S2): 20-25. DOI: 10.11779/CJGE2020S2004
JIANG Ming-jing, WANG Hua-ning, LI Guang-shuai, LIAO You-bin, CHEN You-liang, WEI Chao-qun. DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 20-25. DOI: 10.11779/CJGE2020S2004
Citation: JIANG Ming-jing, WANG Hua-ning, LI Guang-shuai, LIAO You-bin, CHEN You-liang, WEI Chao-qun. DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 20-25. DOI: 10.11779/CJGE2020S2004

深部复合岩体隧道开挖离散元模拟  English Version

基金项目: 

国家自然科学基金重大项目 51890911

国家自然科学基金重点项目 51639008

详细信息
    作者简介:

    蒋明镜(1965— ),男,教授,博士生导师,国家杰出青年基金获得者,主要从事天然结构性黏土、砂土、非饱和土、太空土和深海能源土宏观微观试验、本构模型和数值分析研究工作。E-mail:mingjing.jiang@tju.edu.cn

  • 中图分类号: TU43

DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios

  • 摘要: 深部复合岩体隧道开挖过程中,抗压强度比是影响围岩稳定的重要因素。引入考虑胶结尺寸的微观接触模型,采用二维离散元方法对深部上软下硬复合岩体隧道开挖进行了数值模拟,分析了强度比对围岩胶结破坏、最大主应力及扰动区的影响。结果表明,随着抗压强度比的增大,隧道开挖引起的围岩胶结破坏率与扰动区逐渐增大,胶结破坏形式以拉剪破坏为主;最大主应力沿围岩环向呈下垂的滴水状分布,沿径向在软岩中先减小后增大,在硬岩中逐渐增大;随着抗压强度比的增大,最大主应力沿径向在硬岩区变化幅度减小,在软岩区变化幅度增大。
    Abstract: The strength ratio is an important factor affecting the stability of the surrounding rock during tunnel excavation of deeply-situated composite rock mass. A size-dependent bond contact model is implemented to the software of the two-dimensional distinct element method (DEM) to simulate the tunnel excavation of deeply-situated up-soft/low-hard composite rock mass. The influences of strength ratio on bond breakage, the maximum principal stress and disturbance zone of the surrounding rock are investigated. The results show that the bond breakage ratio and the disturbed area ratio caused by tunnel excavation gradually increase with the increase of strength ratio of composite rock mass, and the bond breakage is mainly caused by bond tensile failure. The maximum principal stress is distributed in teardrop shape in the circumferential direction of the surrounding rock, while in the radial direction it decreases firstly and then increases in the soft rock and increases in the hard rock. Moreover, in the radial direction, with the increase of the strength ratio, the variation range of the maximum principal stress decreases in the hard rock but increases in the soft rock.
  • 图  1   立方体抗压强度与层理倾角的关系

    Figure  1.   Relationship between cubic compressive strength and bedding angle

    图  2   试样示意图

    Figure  2.   Sketch of rock specimen

    图  3   试样级配曲线

    Figure  3.   Grain-size distribution curve of DEM specimen

    图  4   DEM试样中测量圆分布情况

    Figure  4.   Positions of measuring circles in DEM specimen

    图  5   胶结破坏与时步关系曲线

    Figure  5.   Relationship between bond breakage rate and time step

    图  6   花岗岩-灰屑岩最大主应力分布特征

    Figure  6.   Distribution characteristics of maximum principal stress in granite-limestone

    图  7   不同抗压强度比与胶结破坏率及扰动区面积比关系曲线

    Figure  7.   Bond breakage rates and disturbed area ratios under different strength ratios

    表  1   岩样微观参数

    Table  1   Microscopic parameters of rock specimens

    岩石 类型颗粒部分胶结部分
    ρ颗粒密度/(kg·m-3)kn颗粒法向刚度/(N·m-1)ks颗粒切向刚度/(N·m-1)μ颗粒摩擦系数β颗粒抗转动系数hmax最大胶结厚度/mσt胶结拉伸强度/Paσc胶结压缩强度/PaEb胶结弹性模量/Nsp胶结延伸率
    花岗岩27006.50×10104.33×10101.01.51.30×1041.00×1093.00×10103.75×1090.15
    大理岩27003.10×10102.05×10101.01.51.30×1041.60×1091.07×10101.07×1090.15
    绿片岩27009.00×1096.00×1090.30.51.30×1041.50×1082.50×1092.50×1080.15
    灰屑岩27009.00×1083.6×1080.70.61.30×1042.18×1072.30×1081.10×1070.15
    下载: 导出CSV

    表  2   岩石宏观参数

    Table  2   Macroscopic parameters of rocks

    参数弹性模量E/GPa泊松比μ巴西劈裂强度σt/MPa单轴抗压强度σc/MPa黏聚力c/MPa内摩擦角φ/(°)
    花岗岩69.00.26016.7200.0050.0048.00
    大理岩30.00.21020.0101.2424.6035.23
    绿片岩3.540.3601.0019.474.4725.26
    灰屑岩0.290.3000.342.150.6029.00
    下载: 导出CSV

    表  3   DEM试样宏观力学参数

    Table  3   Macroscopic mechanical parameters of DEM specimens

    参数弹性模量E/GPa泊松比μ巴西劈裂强度σt/MPa单轴抗压强度σc/MPa黏聚力c/MPa内摩擦角φ/(°)
    花岗岩68.0700.25418.360198.20043.00040.41
    大理岩29.0650.24315.100105.94028.20034.23
    绿片岩3.7300.3590.97822.6717.90023.22
    灰屑岩0.2950.4400.3252.0400.64630.10
    下载: 导出CSV

    表  4   不同抗压强度比深部复合岩体

    Table  4   Composite rock mass with different strength ratios

    复合岩层组合上部下部抗压强度比(上∶下)具体比值
    组合一绿片岩花岗岩22.671∶198.20.114
    组合二灰屑岩花岗岩2.04∶198.20.010
    组合三绿片岩大理岩22.671∶105.940.214
    组合四灰屑岩大理岩2.04∶105.940.019
    下载: 导出CSV

    表  5   最终胶结破坏率及对应时步

    Table  5   Final bond breakage rates and corresponding time steps

    组合花岗岩-灰屑岩大理岩-灰屑岩花岗岩-绿片岩大理岩-绿片岩
    时步12330121330041009100
    胶结破坏率/%0.08990.10700.001430.00315
    下载: 导出CSV
  • [1] 高文艺. 深部复合地层TBM隧道变形时空演化规律研究[D]. 徐州: 中国矿业大学, 2015.

    GAO Wen-yi. Study on Space-time Evolution Laws of Surrounding Rockmass Deformation in Deep Mixed Strata Tunnel Excavated by TBM[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)

    [2] 黄锋, 周洋, 李天勇, 等. 软硬互层岩体力学特性及破坏形态的室内试验研究[J/OL]. 煤炭学报: 1-10[2020-03-17]. doi: 10.13225/j.cnki.jccs.2019.1388.
    [3]

    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47

    [4] 蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    [5] 王志伟, 乔春生, 宋超业. 上软下硬岩质地层浅埋大跨隧道松动压力计算[J]. 岩土力学, 2014, 35(8): 2342-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408030.htm

    WANG Zhi-wei, QIAO Chun-sheng, SONG Chao-ye. Calculation method of relaxation pressure of shallow large span tunnel in up-soft/low-hard rock stratum[J]. Rock and Soil Mechanics, 2014, 35(8): 2342-2352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408030.htm

    [6]

    JIANG M J, ZHANG N, CUI L, et al. A size-dependent bond failure criterion for cemented granules based on experimental studies[J]. Computers and Geotechnics, 2015, 69: 182-198. doi: 10.1016/j.compgeo.2015.05.007

    [7]

    JIANG M J, LIU W, XI B L, et al. Preliminary DEM analysis on micro-mechanical behavior of the composite cemented granules under complex stress conditions[C]//Proceedings of the 7th International Conference on Discrete Element Methods, 2016, Singapore.

    [8] 张春深, 陈祥荣, 侯靖, 等. 锦屏二级水电站深埋大理岩力学特性研究[J]. 岩石力学与工程学报, 2010, 29(10): 1999-2009. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010009.htm

    ZHANG Chun-shen, CHEN Xiang-rong, HOU Jing, et al. Study of mechanical behavior of deep-buried marble at jinping hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1999-2009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010009.htm

    [9]

    MARTIN D C. The strength of massive Lac du Bonnet Granite Around Underground Opeanings[D]. Winnipeg: University of Manitoba, 1993.

    [10] 黄书岭. 高应力下脆性岩石的力学模型与工程应用研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2008.

    HUANG Shu-ling. Study on Mechanical Model of Brittle Rock under High Stress Condition and Its Engineering Applications[D]. Wuhan: Graduateschool of the Chinese Academy of Sciences (Wuhan Institute of Geotechnical Mechanics), 2008. (in Chinese)

    [11] 吕品. 锦屏水电站绿片岩段扩挖及落底开挖稳定研究[D]. 大连: 大连理工大学, 2011.

    LÜ Pin. The Research of Enlarged Excavation and Surrounding Rock Stability in The Green Schist Area of Jinping Hydropower Station[D]. Dalian: Dalian University of Technology, 2011. (in Chinese)

    [12]

    CIANTIA M O, CASTELLANZA R, PRISCO C D. Experimental study on the water-induced weakening of calcarenites[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 441-461. doi: 10.1007/s00603-014-0603-z

    [13]

    PARMA M, NOVA R. Effects of bond crushing on the settlements of shallow foundations on soft rocks[J]. Géotechnique, 2011, 61(3): 247-261. doi: 10.1680/geot.7.00183

    [14] 杨开新, 蒋明镜, 陈有亮, 等. 不同岩性下TBM滚刀破岩过程离散元分析[J]. 水资源与水工程学报, 2019, 30(2): 198-204, 211.

    YANG Kai-xin, JIANG Ming-jing, CHEN You-liang, et al. Discrete element method analysis on rock breaking process induced by TBM cutters under different lithologies[J]. Journal of Water Resources and Water Engineering, 2019, 30(2): 198-204, 211. (in Chinese)

    [15] 吴渤. 层状岩体隧道围岩扰动区演化与锚固机理研究[D]. 武汉: 中国地质大学, 2016.

    WU Bo. Study on disturbance zone evolution and anchoring mechanism of surrounding rock in layered rock tunnel[D]. Wuhan: China University of Geosciences, 2016. (in Chinese)

    [16]

    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8

    [17] 陈贺. 岩石宏微观力学特性及高陡岩质边坡的离散元数值模拟[D]. 上海: 同济大学, 2013.

    CHEN He. Macroscopic and Microscopic Mechanical Properties of Rocks and Discrete Element Numerical Simulation of High-Steep Rock Slopes[D]. Shanghai: Tongji University, 2013. (in Chinese)

    [18] 蔡美峰. 岩石力学与工程[M]. 北京: 科学出版社, 2002.

    CAI Mei-feng, Rock Mechanics and Engineering[M]. Beijing: Science Press, 2002. (in Chinese)

    [19] 赵瑜, 卢义玉, 陈浩. 深埋隧道三心拱洞室平面应变模型试验研究[J]. 土木工程学报, 2010, 43(3): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201003015.htm

    ZHAO Yu, LU Yi-yu, CHEN Hao. A plane strain modeling study of a three-center arch for deep tunnels[J]. China Civil Engineering Journal, 2010, 43(3): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201003015.htm

    [20]

    JIANG M J, YIN Z Y. Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method[J]. Tunnelling and Underground Space Technology, 2012, 32(6): 251-259.

图(7)  /  表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回