• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

竖向排水井对北疆膨胀土渠道稳定性的作用分析

邓铭江, 蔡正银, 郭万里, 黄英豪, 张晨

邓铭江, 蔡正银, 郭万里, 黄英豪, 张晨. 竖向排水井对北疆膨胀土渠道稳定性的作用分析[J]. 岩土工程学报, 2020, 42(S2): 1-6. DOI: 10.11779/CJGE2020S2001
引用本文: 邓铭江, 蔡正银, 郭万里, 黄英豪, 张晨. 竖向排水井对北疆膨胀土渠道稳定性的作用分析[J]. 岩土工程学报, 2020, 42(S2): 1-6. DOI: 10.11779/CJGE2020S2001
DENG Ming-jiang, CAI Zheng-yin, GUO Wan-li, HUANG Ying-hao, ZHANG Chen. Influences of vertical drainage wells on stability of expansive soil canals in North Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 1-6. DOI: 10.11779/CJGE2020S2001
Citation: DENG Ming-jiang, CAI Zheng-yin, GUO Wan-li, HUANG Ying-hao, ZHANG Chen. Influences of vertical drainage wells on stability of expansive soil canals in North Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 1-6. DOI: 10.11779/CJGE2020S2001

竖向排水井对北疆膨胀土渠道稳定性的作用分析  English Version

基金项目: 

国家重点研发计划重点专项 2017YFC0405102

国家自然科学基金项目 51909170

国家自然科学基金项目 51879166

中央级公益性科研院所基本科研业务费专项 Y319010

中国博士后科学基金项目 2018M640500

详细信息
    作者简介:

    邓铭江(1960— ),男,博士,湖南耒阳人,中国工程院院士,教授级高级工程师,主要从事干旱区水资源研究与水利工程建设管理工作。E-mail:xjdmj@163.com

    通讯作者:

    郭万里, E-mail:guowljs@163.com

  • 中图分类号: TU443;TV223

Influences of vertical drainage wells on stability of expansive soil canals in North Xinjiang

  • 摘要: 北疆输水渠道是周期性供水渠道,渠水渗漏会使得渠基土经历“干湿”循环作用,将显著降低膨胀性渠基土的强度,进而影响渠道的稳定性。为了降低渠水渗漏对渠坡稳定性的威胁,建管部门对渠道进行了渗水速排系统改造。其中,竖向排水井的主要作用是将渗水集中抽排;此外,还可能发挥类似抗滑桩的作用。因此,针对该问题开展了数值分析,结果表明:若竖向排水井抽排作业将渗漏断面的膜后水位降低至0 m,可以确保渠道断面在最危险工况下稳定性系数Fs大于1.35,渠坡处于稳定状态;若不进行渗水抽排,膜后水位大于1 m的断面在运行10年以上时,Fs将小于1.05,渠坡处于欠稳定或不稳定状态。仅分析竖向排水井作为抗滑桩的作用,排水井在当前位置(桩心距离渠沿6 m)起到的抗滑作用基本可以忽略,滑弧将会出现在排水井前方;将排水井向靠近渠坡的方向移动至渠沿时,单根排水井对渠坡抗滑保护范围最大,为44 m。
    Abstract: The water conveyance canal in North Xinjiang is a periodic water supply canal, and the "wetting-drying" circulation caused by canal water leakage may significantly reduce the strength of expansive soils and further affect the stability of the expansive soil canals. In order to reduce the threat of canal leakage to the stability of canal slopes, the Construction and Management Department has carried out the transformation of the seepage quick drainage system. Based on this, the stability characteristics of the canals before and after the reform are analyzed through numerical calculation. The results show that if the water level behind the membrane of the leakage section is reduced to 0 m by the vertical drainage well pumping operation, the stability factor of the section under the most dangerous condition is greater than 1.35, which means the canal slope is stable. If the seepage pumping is not carried out, when the section with water level greater than 1 m after membrane is operated for more than 10 years, the stability factor will be less than 1.05, and the canal slope is understable or unstable. Only the function of the vertical drainage wells as the anti-slide piles is analyzed, then the function can be ignored, and the sliding arc will appear in front of the drainage wells. If the location of a drainage well is moves forward, the maximum protection range of a single pile is 44 meters when the drainage well moves to the edge of the canal.
  • 图  1   典型膨胀土渠道滑坡

    Figure  1.   Typical landslide of expansive soil canal

    图  2   渠道模型三维网格划分

    Figure  2.   3D mesh of canal model

    图  3   渠坡稳定性系数Fs与运行时间的关系

    Figure  3.   Relationship between stability factor Fs and operation years

    图  4   潜在滑弧的位置(灰色为潜在滑动带)

    Figure  4.   The position of potential slip circles

    图  5   不同方案竖向排水井的位置示意图

    Figure  5.   Diagram of drainage wells at different positions

    图  6   方案6单桩保护范围示意图

    Figure  6.   Schematic diagram of protection scope of single pile in Scheme 6

    图  7   方案5单桩保护范围示意图

    Figure  7.   Schematic diagram of protection scope of single pile in Scheme 5

    图  8   方案1单桩保护范围示意图

    Figure  8.   Schematic diagram of protection scope of single pile in Scheme 1

    图  9   方案1排水井圆心所在断面的位移云图

    Figure  9.   Displacements of section of pile center in Scheme 1

    图  10   桩在不同位置时的保护范围

    Figure  10.   Protection range for piles at different locations

    图  11   单桩保护范围最大时桩所在位置示意图

    Figure  11.   Schematic diagram of pile position under maximum protection range of a single pile

    表  1   边坡稳定性状态划分

    Table  1   Division of slope stability state

    稳定性系数FsFs<1.01≤Fs<1.051.05≤FsFstFsFst
    稳定性状态不稳定欠稳定基本稳定稳定
    注:Fst为边坡稳定安全系数,一级、二级和三级安全等级的永久边坡,一般工况对应的Fst分别为1.35,1.30和1.25。本计算边坡取Fst=1.35。
    下载: 导出CSV

    表  2   数值计算方案

    Table  2   Numerical schemes

    方案编号方案1方案2方案3方案4方案5方案6
    排水井状态初始位置前移1.5 m前移3.0 m前移4.5 m前移6.0 m前移7.5 m
    排水井圆心坐标-6.0 m-4.5 m-3.0 m-1.5 m0 m1. 5 m
    下载: 导出CSV
  • [1] 张良以, 陈铁林, 张顶立. 降雨诱发膨胀土边坡渐进破坏研究[J]. 岩土工程学报, 2019, 41(1): 70-77.

    ZHANG Liang-yi, CHEN Tie-lin, ZHANG Ding-li. Progressive failure of expansive soil slopes under rainfall[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 70-77. (in Chinese)

    [2] 孔令伟, 陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报, 2012, 45(5): 141-161.

    KONG Ling-wei, CHEN Zheng-han. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5): 141-161. (in Chinese)

    [3] 殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12): 2155-2161.

    YIN Zong-ze, YUAN Jun-ping, WEI Jie, et al. Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. (in Chinese)

    [4] 唐朝生, 施斌. 干湿循环过程中膨胀土的胀缩变形特征[J]. 岩土工程学报, 2011, 33(9): 1376-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109013.htm

    TANG Chao-sheng, SHI Bin. Swelling and shrinkage behaviour of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1376-1384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109013.htm

    [5]

    OH S, NING L. Slope stability analysis under unsaturated conditions: Case studies of rainfall-induced failure of cut slopes[J]. Engineering Geology, 2015, 184: 96-103. doi: 10.1016/j.enggeo.2014.11.007

    [6] 陈善雄, 戴张俊, 陆定杰, 等. 考虑裂隙分布及强度的膨胀土边坡稳定性分析[J]. 水利学报, 2014, 45(12): 1442-1449.

    CHEN Shan-xiong, DAI Zhang-jun, LU Ding-jie, et al. Stability analysis of expansive soil slope considering fracture distribution and strength[J]. Journal of Hydraulic Engineering, 2014, 45(12): 1442-1449. (in Chinese)

    [7] 周跃峰, 程展林, 龚壁卫, 等. 新疆某渠道边坡填料的剪胀特性与变形失稳研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 4406-4414. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2063.htm

    ZHOU Yue-feng, CHENG Zhan-lin, GONG Bi-wei, et al. The dilatancy and instability of an infilled material in a canal slope in Xinjiang[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4406-4414. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2063.htm

    [8] 岑威钧, 王蒙, 石从浩, 等. 降雨条件下多裂隙膨胀岩渠坡稳定性分析[J]. 郑州大学学报(工学版), 2014, 35(2): 10-14.

    CENG Wei-jun, WANG Meng, SHI Cong-hao. Stability analysis of multi-fissure expansive rock canal slope under rainfall conditions[J]. Journal of Zhengzhou University (Engineering Science), 2014, 35(2): 10-14. (in Chinese)

    [9] 温世亿. 膨胀土渠坡若干关键技术问题研究[D]. 武汉: 武汉大学, 2010.

    WEN Shi-yi. Research on Several Key Teehnieal Problems of Expansive Soil Canal Slopes[D]. Wuhan: Wuhan University, 2010. (in Chinese)

    [10]

    KHAN M S, HOSSAIN S, AHMED A, et al. Investigation of a shallow slope failure on expansive clay in texas[J]. Engineering Geology, 2016, 219: S0013795216304616.

    [11] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19): 3381-3388.

    ZHENG Ying-ren, ZHAO Shang-yi. Application of strength reduction FEM in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381-3388. (in Chinese)

    [12] 邓铭江, 蔡正银, 郭万里, 等. 北疆白砂岩特殊物理力学性质试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1001.htm

    DENG Ming-jiang, CAI Zheng-yin, GUO Wan-li. Experimental study on special physical and mechanical properties of white sandstone in North Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1001.htm

    [13] 陈皓. 膨胀土渠道在干湿循环作用下的稳定性研究[D]. 南京: 南京水利科学研究院, 2019.

    CHEN Hao. Study on Stability of Canal Slope of Expensive Soil under Drying-wetting Cycles[D]. Nanjing: Nanjing Hydraulic Research Institute, 2019. (in Chinese)

图(11)  /  表(2)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  36
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回