• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

压实度和含水率对非饱和土导热系数的影响

徐洁, 胡海涛, 郑植

徐洁, 胡海涛, 郑植. 压实度和含水率对非饱和土导热系数的影响[J]. 岩土工程学报, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
引用本文: 徐洁, 胡海涛, 郑植. 压实度和含水率对非饱和土导热系数的影响[J]. 岩土工程学报, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048
Citation: XU Jie, HU Hai-tao, ZHENG Zhi. Effects of compaction and water content on thermal conductivity of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 244-248. DOI: 10.11779/CJGE2020S1048

压实度和含水率对非饱和土导热系数的影响  English Version

基金项目: 

中央高校基本科研业务费专项资金项目 2019B13714

河海大学岩土力学与堤坝工程教育部重点实验室开放基金项目 GHXN201903

留学人员科技活动项目择优资助经费项目 2013

详细信息
    作者简介:

    徐洁(1982— ),女,副教授,主要从事非饱和土力学、能源岩土工程等方面的研究工作。E-mail:cexujie@163.com

  • 中图分类号: TU431

Effects of compaction and water content on thermal conductivity of unsaturated soils

  • 摘要: 土体的导热系数是地下空间结合地热能开发等岩土工程重要的热物理参数。现场土往往处于非饱和状态,研究其导热性能有重要工程价值。采用瞬态法测量了不同压实度和含水率下非饱和石英砂、石英粉和高岭土的导热系数,研究这3种非饱和土体的导热系数与含水率和干密度的关系。研究结果表明,在相同压实度下,石英砂、石英粉和高岭土的导热系数在临界含水率之前随着含水率的增加而快速增加,之后增势变缓趋于稳定;临界含水率从大到小依次为:高岭土、石英粉、石英砂;在相同压实度和含水率下,石英砂的导热系数最大,石英粉次之,高岭土最小;相同含水率时,3种土体的导热系数均随干密度的增加而线性增加。
    Abstract: The thermal conductivity of soils is an important thermal physical parameter for geotechnical engineering such as underground space and geothermal development. Field soils are generally under unsaturated state, and studying on the thermal conductivities of unsaturated soils has important engineering value. The thermal conductivities of quartz sand, quartz powder and kaolin clay under different degrees of compaction and different water contents are measured by using the transient state method, and the relationships between thermal conductivities of the three unsaturated soils with water content and dry density are studied. The results show that under the same degree of compaction, the thermal conductivities of quartz sand, quartz powder and kaolin clay all increase rapidly with the increase of water content before critical water contents, and then tend to be stable. The critical water content of kaolin clay is the highest, followed by quartz powder and then quartz sand. Under the same degree of compaction and the same water content, the thermal conductivity of quartz sand is the largest, followed by quartz powder and then kaolin clay. Under the same water content, the thermal conductivities of the three soils all increase linearly with the increase of dry density.
  • 图  1   TP08小型瞬态导热系数探针及其测量容器

    Figure  1.   TP08 small transient thermal conductivity probe and its measuring vessel

    图  2   石英砂(20目)导热系数与含水率的关系

    Figure  2.   Relationship between thermal conductivity and water content of quartz sand (20)

    图  3   石英粉(200目)导热系数与含水率的关系

    Figure  3.   Relationship between thermal conductivity and water content of quartz powder (200)

    图  4   石英粉(500目)导热系数与含水率的关系

    Figure  4.   Relationship between thermal conductivity and water content of quartz powder (500)

    图  5   高岭土(800目)导热系数与含水率的关系

    Figure  5.   Relationship between thermal conductivity and water content of kaolin clay (800)

    图  6   石英砂(20目)导热系数与干密度的关系

    Figure  6.   Relationship between thermal conductivity and dry density of quartz sand (20)

    图  7   石英粉(200目)导热系数与干密度的关系

    Figure  7.   Relationship between thermal conductivity and dry density of quartz powder (200)

    图  8   石英粉(500目)导热系数与干密度的关系

    Figure  8.   Relationship between thermal conductivity and dry density of quartz powder (500)

    图  9   高岭土(800目)导热系数与干密度的关系

    Figure  9.   Relationship between thermal conductivity and dry density of kaolin clay (800)

    表  1   试验用土的基本参数

    Table  1   Basic properties of test soils

    土类类型最大干密度/(g·cm-3)最优含水率/%饱和含水率/%
    石英砂(20目)砂土1.681925
    石英粉(200目)粉土1.681930
    石英粉(500目)粉土1.681940
    高岭土(800目)黏土1.293745
    下载: 导出CSV

    表  2   试验方案

    Table  2   Test programs

    编号土类压实度/%质量含水率/%
    1-6石英砂 (20目)800,10,15,20,25,饱和
    7-1290
    13-18100
    19-23石英粉 (200目)8010,15,20,25,30(饱和)
    14-2890
    29-33100
    34-38石英粉 (500目)8010,15,20,25,40(饱和)
    39-4390
    44-48100
    49-54高岭土 (800目)8020,25,30,35,40,45
    55-6090
    61-66100
    下载: 导出CSV
  • [1]

    NG C W W, MENZIES B. Advanced Unsaturated Soil Mechanics and Engineering[M]. London: Taylor and Francis, 2007.

    [2] 张楠, 夏胜全, 侯新宇, 等. 土热传导系数及模型的研究现状和展望[J]. 岩土力学, 2016, 37(6): 1550-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606004.htm

    ZHANG Nan, XIA Sheng-quan, HOU Xin-yu, et al. Review on soil thermal conductivity and prediction model[J]. Rock and Soil Mechanics, 2016, 37(6): 1550-1562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606004.htm

    [3]

    SALOMONE L A, KOVACS W D, KUSUDA T. Thermal performance of fine-grained soils[J]. Journal of Geotechnical Engineering, 1984, 110(3): 359-374. doi: 10.1061/(ASCE)0733-9410(1984)110:3(359)

    [4] 陈守义. 用热针法测定土的导热热导率[J]. 岩土力学, 1989, 10(1): 60-65.

    CHEN Shou-yi. Measurement of soil thermal conductivity with thermal needle method[J]. Rock and Soil Mechanics, 1989, 10(1): 60-65. (in Chinese)

    [5] 谈云志, 喻波, 胡新江, 等. 非饱和土热导率预估模型研究[J]. 岩土工程学报, 2013, 35(增刊1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1020.htm

    TAN Yun-zhi, YU Bo, HU Xin-jiang, et al. Prediction model for thermal conductivity of unsaturated soil[J]. Chinese Jourmal of Geotechnical Engineering, 2013, 35(S1): 129-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1020.htm

    [6] 叶万军, 董西好, 杨更社, 等. 含水率和干密度对黄土热参数影响的试验研究[J]. 岩土力学, 2017, 38(3): 656-662. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703006.htm

    YE Wan-jun, DONG Xi-hao, YANG Geng-she, et al. Effect of moisture content and dry density on the thermal parameters of loess[J]. Rock and Soil Mechanics, 2017, 38(3): 656-662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703006.htm

    [7] 董西好, 叶万军, 杨更社, 等. 温度对黄土热参数影响的试验研究[J]. 岩土力学, 2017, 38(10): 2888-2894, 2900. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710016.htm

    DONG Xi-hao, YE Wan-jun, YANG Geng-she, et al. Experimental study of influence of temperature on thermal properties of loess[J]. Rock and Soil Mechanics, 2017, 38(10): 2888-2894, 2900. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710016.htm

    [8]

    NGUYEN V T, HEINDL H, PEREIRA J M, et, al. Frost, Water retention and thermal conducticity of a natural unsaturated loess[J]. Géotechnique, 2018, 7(4): 1-6.

    [9]

    BOUKELIA A, ESLAMI H, ROSIN-PAUMIER S, et al. Effect of temperature and initial state on variation of thermal parameters of fine compacted soils[J]. European Journal of Environmental and Civil Engineering, 2019, 23(9): 1125-1138.

    [10]

    GANGADHARA M S, KOLAY P K. Thermal characteristics of a Class F fly ash[J]. Cement and Concrete Research, 1998, 28(6): 841-846.

    [11] 肖琳, 李晓昭, 赵晓豹, 等. 含水量与孔隙率对土体热导率影响的室内实验研究[J]. 解放军理工大学学报(自然科学版), 2008, 9(3): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200803009.htm

    XIAO Lin, LI Xiao-zhao, ZHAO Xiao-mao, et al. Laroratory on influences of moisture content and porosity on the thermal conductivity of soils[J]. Journal of PLA University of Science and Technongy, 2008, 9(3): 241-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200803009.htm

    [12]

    HORAI K. Thermal conductivity of rock-forming minerals[J]. Journal of Geophysical Research, 1971, 76(5): 1278-1308.

    [13] 刘建军, 刘海蕾. 岩石热物理性质测试与分析[J]. 西部探矿工程, 2009, 21(4): 144-148. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200904047.htm

    LIU Jian-jun, LIU Hai-lei. Test and analysis of thermophysical properties of rocks[J]. West-China Exploration Engineering, 2009, 21(4): 144-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK200904047.htm

  • 期刊类型引用(5)

    1. 田晓丹,姜晓桢,殷友超,石泽译. 基于土工膜透声特性的膜下垫层渗透变形声波特征试验研究. 水利水电科技进展. 2025(02): 31-37 . 百度学术
    2. 张宪雷,马仲阳,刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理. 岩土工程学报. 2024(11): 2333-2340 . 本站查看
    3. 张宪雷,马仲阳,吴云云. 面膜堆石坝不同品种土工膜力学特性. 岩土工程学报. 2023(05): 940-952 . 本站查看
    4. 徐国雷,张宪雷,马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理. 水电能源科学. 2022(12): 138-142 . 百度学术
    5. 黄耀英,谢同,费大伟,包腾飞,颜剑. 基于测压管实测水位的王甫洲水利工程复合土工膜工作性态反馈. 岩土工程学报. 2021(03): 564-571 . 本站查看

    其他类型引用(2)

图(9)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-06-03
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回