Distribution of pile-soil stress in centrifugal modelling of composite foundation
-
摘要: 基于PCC桩承式加筋路堤离心模型试验,建立三维有限元数值模型,探讨了复合地基桩土应力测试方法及应力分布规律。研究表明:标定介质对土压传感器的系数有明显影响;桩帽及桩间土顶部的竖向土压分布都不均匀,其形心测点分别处于低应力区及高应力区,采用测量桩顶总荷载换算平均桩帽顶部竖向土压的方法更为合理。由不具有充分代表性的有限的测点所得土压通常无法真实地反映桩、土平均竖向应力。Abstract: Based on the centrifugal modelling of PCC pile-supported and geosynthetic-reinforced embankments and the three-dimensional finite element numerical model, the test methods for vertical earth pressure and stress distribution rules of pile-soil in composite foundation are discussed. The results show that the calibration medium has an obvious influence on the coefficient of the earth pressure cells. In the range of single pile reinforced area, the distribution of vertical earth pressure at the top of pile cap and its surrounding soil is uneven. The centroid measuring points of the cap-top and the subsoil top are in the low-stress area and high-stress area, respectively. It is reasonable to calculate the average vertical earth pressure on the pile cap according to the measured force at the top of the pile. Statistics show that the average vertical stress of pile and soil cannot be characterized by the soil pressure obtained from the limited measuring points which are not fully representative.
-
0. 引言
现浇混凝土大直径薄壁管桩(PCC桩)具有承载力大、造价低等优点,用于加筋路堤下刚性桩复合地基(也称桩承式加筋路堤)具有显著优势[1]。桩土应力分布是桩承式加筋路堤的重要研究内容,试验中桩土应力监测均为必选项[2]。桩土应力比为单桩加固范围内平均桩顶应力与平均桩间土应力的比值。最常用的桩土应力测试方法是在桩帽形心位置、桩间土形心位置分别布置土压力计,以直接观测到的压强计算桩土应力比。为进一步增加测试可靠性,可在桩顶或桩间土中布置多个土压测试传感器,取多点均值评价桩土应力比[2-4]。若复合地基中桩顶和桩间土顶部的竖向应力都为均匀分布,布置形心测点并无不妥。然而,由于桩、土刚度差异显著,桩土应力分布受土拱效应、加筋效应等众多因素影响显著,常用的单点测法或多点均值法是否为所求平均应力仍值得商榷。探讨桩承式加筋路堤桩土应力测试、规避测试误差并优化测试方法是确保试验数据真实可靠的重要环节。然而,目前很少有文献讨论上述桩土应力测法及可靠性。
土工离心模型试验可以借助高重力场创造与原型应力水平相当的地应力场,将现场性状在模型中再现,是岩土工程领域先进的物理试验方法,并已逐步应用于桩承式加筋路堤工作机制研究[5-6]。本文开展了加筋路堤下PCC桩复合地基离心模型试验,并建立相应的三维有限元模型。分析并探讨复合地基桩土应力测试方法及路堤下桩土应力分布特点。
1. 试验方法及数值模拟
1.1 试验概述
为研究加筋路堤下PCC桩复合地基桩土应力分担特性,在南京水利科学研究院NHRI 60 gt土工离心试验平台上开展了相关试验。如图1所示,原型工况软基包括9.6 m厚的软土层和9.0 m的粉质黏土下卧层,上覆加筋路堤填高6.0 m。PCC桩外径为1.2 m,壁厚0.15 m,桩间距为4.2 m,桩长12.0 m,嵌入下卧层2倍桩径深度。桩顶布置直径为2.05 m的圆形桩帽(桩土置换率为18.7%),桩帽之上铺设一层抗拉强度为210 kN/m的土工加筋。
离心模型试验箱净尺寸为700 mm×350 mm×450 mm(长×宽×高)。选择离心模型的相似比尺N=60,根据路堤的对称性取半幅路堤建模,考虑边界影响,将路中断面传感器布置在左起第二排桩(图2)。模型桩采用杨氏模量为68.9 GPa的6061铝合金管按照抗压刚度相似进行制作,模型桩外径为20 mm,壁厚1 mm,其内外壁粘贴细砂进行粗糙处理以模拟现浇桩的桩土接触面特性。复合地基模型制备方法详见参考文献[7]。采用线性提高离心加速度的方法实现路堤加载,2 h内将离心加速度由0g提高至60g。
1.2 数值模拟概述
为深入分析桩承式加筋路堤桩土应力分布规律及机理,使用ABAQUS非线性有限元软件建立离心模型对应的现场三维数值模型(图3)。模型横向取半幅路堤,纵向取半排桩加固范围[8]。材料参数如表1所示,填筑路堤使用莫尔-库仑理想弹塑性模型(MC),主要软土层和下卧层采用修正剑桥本构模型(MCC);为便于MCC模型收敛,表层0.3 m厚的软土层采用MC模型。PCC桩和土工加筋采用线弹性本构模型。
表 1 数值模拟材料参数Table 1. Parameters for numerical simulation材料 参数 PCC桩 =24 kN/m3, E=30 GPa, =0.2 土工加筋 J2%= 210 kN/m, E=2 GPa, =0.3 软土(MC) =19.3 kN/m3, E=5 MPa, =0.34, =19 kPa, =29°, ψ=0°, k=1.47×10-8 m/s, e0=0.878 软土(MCC) =19.3 kN/m3, =0.097, M=1.32, e1=1.197, κ=0.0194, =0.34, k=1.47×10-8 m/s, e0=0.878 下卧层 =20.2 kN/m3, =0.074, M=1.425, e1=0.95, κ=0.0155, =0.31, k=2.63×10-8 m/s, e0=0.662 路堤填土 =19.7 kN/m3, E=26 MPa, =0.3, =0 kPa, =40°, ψ=10° 注: J2%为土工加筋在2%应变的极限抗拉强度。流固耦合计算时,地基土为C3D8P单元,PCC桩和路堤材料采用C3D8单元,土工加筋采用M3D4单元并嵌入路堤中。不考虑成桩过程,将路堤荷载在100 d内线性施加,地基完全饱和,地表为排水面。结构与土接触本构采用经典的法向硬接触、切向罚函数的库仑接触,其中桩-软土、桩-下卧层、砂土-路堤的摩擦系数[7]分别为0.46,0.58,0.64。
2. 土压测试
在路中位置土工加筋之下的桩帽及桩间土形心位置布置一组土压传感器测量竖向土压,同时在模型桩的桩顶布置一个外径与模型桩相等的轴力传感器采集桩顶总荷载(见图4,5)。如文献[8]所示,试验所用微型土压力传感器量程为0.5 MPa和1.0 MPa,直径为12 mm,精度误差≤0.3 F•S。将小量程的传感器布置在布桩形心位置的软土表面观测桩间土应力;将大量程的传感器布置在桩帽中心位置使其上表面与桩帽顶面齐平,作为截面土压力计测桩顶应力。
土压传感器常用标定方法包括气压标定、液压标定及土压标定等。传感器出厂标定系数多为液压标定,而液标法往往不能准确反映土中传感器真实的工作状态[9]。表2对比了5个土压传感器的水标和土标两种率定系数,显然,水标所得系数均大于土标系数。即单位上覆压力变化,水标时传感器读数变化幅度比土标时大。可见,标定介质将直接影响标定系数。高重力场中使用微型土压传感器测量上覆土压力时,应在离心环境中使用土压标定法进行率定[10]。
表 2 标定方式对比Table 2. Comparison of calibration methods编号 #1 #2 #3 #4 #5 土标系数/kPa-1 1.52 1.61 2.17 2.13 2.54 水标系数/kPa-1 1.75 2.31 2.45 2.41 2.90 误差/% 14.9 43.6 12.8 13.1 14.4 本文使用路堤砂分6级加速度对土压传感器进行标定。由图6(a)标定结果可知,土压传感器线性度良好。在路中附近设置的桩顶轴力传感器外径与模型桩相同,并置于桩帽之下,量程为500 N。采用分级加压的方式进行标定(图5),线性度良好(图6(b))。
3. 桩土应力分布分析
3.1 桩土应力
根据路堤填高计算的单桩加固范围内的总荷载
( 为路堤平均重度, 为路堤填高, 为单桩加固面积)为2085 kN。如图7所示,在第1000 d实测桩帽中心及桩间土中心位置的竖向土压分别为318,93 kPa,算得单桩加固范围内的荷载Fsingle为2381 kN,高于理论值14.2%。有限元数值计算提取桩帽及桩间土的平均竖向应力分别为553,16 kPa,其Fsingle为2057 kN,更接近 。桩、土竖向应力测值与数值计算均值差别较大,而桩顶轴力实测荷载换算的桩顶平均竖向应力与数值计算值契合良好(图7)。有必要分析单点土压传感器所测应力的均值代表性问题。 图8为试验结束时刻路中单桩加固范围内桩帽及桩间土顶面的竖向应力云图,桩帽及桩间土顶面的竖向应力并非均匀分布。置于布桩形心位置的土压传感器所测竖向压强高于桩间土平均压强(ABAQUS中以拉为正,压为负)。桩帽之上竖向压力分布同样不均匀,靠近桩帽边缘压强大于中心区域,在近边坡一侧应力增长尤为明显(X轴指向坡脚方向)。桩帽中心区域为低应力区,将传感器置于桩帽中心位置,压强测值小于桩帽平均竖向压强。桩顶平均竖向应力的数值模拟结果与桩顶轴力测试结果相一致,证明采用测量桩顶总荷载换算平均竖向应力的方法更可靠。单点的土压测值只能反映其所在位置的土压,一般无法代表所测区域的平均应力分布状况,置于形心位置的传感器所测单点桩土应力比低于实际的桩土平均应力之比。
3.2 应力不均匀分布讨论
土压力测值(单点或多点取平均)不具有均值代表性的现象普遍存在,统计多篇路堤下复合地基现场试验报道[11-17]的路中位置桩土压力测试结果,计算单桩加固范围内的竖向荷载Fsingle并与理论值
进行对比。如图9所示,Fsingle与 呈现一定的离散型。以 为基准值,统计数据表明测试荷载Fsingle的误差范围为-35.3%~58.5%(图9),负值代表实测计算值小于理论值。土压力测试影响因素众多,由不具有充分代表性的有限土压测点所得测值通常无法真实地反映桩、土平均竖向应力,应妥善选择土压测试装置,或根据所需改进土压方法以有效获取桩土应力分布规律。 4. 结论
本文开展了加筋路堤下PCC桩复合地基离心模型试验,并建立了与之相对应的三维有限元数值模型,探讨了桩土应力测试方法及应力分布规律。主要得出以下结论:
(1)标定介质对土压传感器的系数有明显影响,土压传感器应选择使用土压标定法进行率定。
(2)桩帽顶部及桩间土顶部的竖向土压分布都不均匀。置于桩帽顶部中心的土压测值低于桩顶平均竖向应力,置于布桩形心位置的桩间土应力测值低于平均桩间土竖向应力。
(3)由不具有充分代表性的少数土压测点所得测值通常无法真实地反映桩、土平均竖向应力。采用测量桩顶总荷载换算平均桩顶应力的方法更合理。
-
表 1 数值模拟材料参数
Table 1 Parameters for numerical simulation
材料 参数 PCC桩 =24 kN/m3, E=30 GPa, =0.2 土工加筋 J2%= 210 kN/m, E=2 GPa, =0.3 软土(MC) =19.3 kN/m3, E=5 MPa, =0.34, =19 kPa, =29°, ψ=0°, k=1.47×10-8 m/s, e0=0.878 软土(MCC) =19.3 kN/m3, =0.097, M=1.32, e1=1.197, κ=0.0194, =0.34, k=1.47×10-8 m/s, e0=0.878 下卧层 =20.2 kN/m3, =0.074, M=1.425, e1=0.95, κ=0.0155, =0.31, k=2.63×10-8 m/s, e0=0.662 路堤填土 =19.7 kN/m3, E=26 MPa, =0.3, =0 kPa, =40°, ψ=10° 注: J2%为土工加筋在2%应变的极限抗拉强度。表 2 标定方式对比
Table 2 Comparison of calibration methods
编号 #1 #2 #3 #4 #5 土标系数/kPa-1 1.52 1.61 2.17 2.13 2.54 水标系数/kPa-1 1.75 2.31 2.45 2.41 2.90 误差/% 14.9 43.6 12.8 13.1 14.4 -
[1] LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1483)
[2] 娄炎, 何宁, 娄斌. 高速公路深厚软基工后沉降控制成套技术[M]. 北京: 人民交通出版社, 2011: 91-104. LOU Yan, HE Ning, LOU Bin. Complete Settlement Control Technology for Deep Soft Foundation of Expressway[M]. Beijing: China Communications Press, 2011: 91-104. (in Chinese)
[3] 龚晓南. 复合地基理论及工程应用[M]. 2版.北京: 中国建筑工业出版社, 2007: 57-70. GONG Xiao-nan, Composite Foundation Theory and Engineering Application[M]. 2nd ed. Beijing: China Architecture and Building Press, 2007: 57-70. (in Chinese)
[4] 姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报, 2018(2): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802006.htm JIANG Yan-bin, HE Ning, LIN Zhi-qing, et al. Numerical Study on Pipe Pile Composite Foundation of Deep Soft Foundation Under Embankment[M]. Hydro-science and Engineering, 2018(2): 43-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802006.htm
[5] YE G B, ZHANG Q W, ZHANG Z, et al. Centrifugal modeling of a composite foundation combined with soil-cement columns and prefabricated vertical drains[J]. Soils and Foundations, 2015, 55(5): 1259-1269. doi: 10.1016/j.sandf.2015.09.024
[6] 刘飞成, 张建经. 斜坡基底软土桩-网复合地基变形特性离心试验研究[J]. 岩石力学与工程学报, 2018, 37(1): 209-219. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801021.htm LIU Fei-cheng, ZHANG Jian-jing. Centrifuge test on deformation characteristics of pile-geogrid composite foundation in soft soil under slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 209-219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801021.htm
[7] 姜彦彬, 何宁, 耿之周, 等. PCC桩复合地基离心模型制备及桩土接触模拟[J]. 水利水运工程学报, 2020(2): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202002013.htm JIANG Yan-bin, HE Ning, GENG Zhi-zhou, et al. Simulating the PCC pile composite foundation for centrifuge modelling and pile-soil interaction[J]. Hydro-Science and Engineering, 2020(2): 91-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202002013.htm
[8] 姜彦彬, 何宁, 许滨华, 等. 桩承式加筋路堤有限元几何建模方法及边坡效应研究[J]. 水利水运工程学报, 2020(1): 84-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202001011.htm JIANG Yan-bin, HE Ning, XU Bin-hua, et al. Geometrical modelling with finite element method and slope effect of geosynthetic reinforced and pile-supported embankments[J]. Hydro-science and Engineering, 2020(1): 84-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202001011.htm
[9] 李连祥, 符庆宏, 张海平. 微型土压力传感器标定方法研究[J]. 地震工程学报, 2017, 39(4): 731-737. doi: 10.3969/j.issn.1000-0844.2017.04.0731 LI Lian-xiang, FU Qing-hong, ZHANG Hai-ping. Study on the calibration method of micro earth pressure sensors[J]. China Earthquake Engineering Journal, 2017, 39(4): 731-737. (in Chinese) doi: 10.3969/j.issn.1000-0844.2017.04.0731
[10] 徐光明, 陈爱忠, 曾友金, 等. 超重力场中界面土压力的测量[J]. 岩土力学, 2007, 28(12): 2671-2674. doi: 10.3969/j.issn.1000-7598.2007.12.037 XU Guang-ming, CHEN Ai-zhong, ZENG You-jin, et al. Measurement of boundary total stress in a multi-gravity environment[J]. Rock and Soil Mechanics, 2007, 28(12): 2671-2674. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.12.037
[11] 郑俊杰, 张军, 马强, 等. 路桥过渡段桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2012, 34(2): 355-362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202030.htm ZHENG Jun-jie, ZHANG Jun, MA Qiang, et al. Experimental investigation of geogrid-reinforced and pile-supported embankment at bridge approach[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 355-362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202030.htm
[12] CHEN R P, XU Z Z, CHEN Y M. Field tests on pile-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 777-785.
[13] BRIANÇON L, SIMON B. Performance of pile-supported embankment over soft soil: full-scale experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(4): 551-561.
[14] LIU H L, KONG G Q, CHU J, et al. Grouted gravel column-supported highway embankment over soft clay: case study[J]. Canadian Geotechnical Journal, 2015, 52(11): 1725-33.
[15] ZHOU M, LIU H L, CHEN Y M, et al. First application of cast-in-place concrete large-diameter pipe (PCC) pile-reinforced railway foundation: a field study[J]. Canadian Geotechnical Journal, 2016, 53(4): 708-716.
[16] CHENG Q G, WU J J, ZHANG D X, et al. Field testing of geosynthetic-reinforced and column-supported earth platforms constructed on soft soil[J]. Frontiers of Structural and Civil Engineering, 2014, 8(2): 124-139.
[17] CAO W Z, ZHENG J J, ZHANG J, et al. Field test of a geogrid-reinforced and floating pile-supported embankment[J]. Geosynthetics International, 2016, 23(5): 348-361.
-
期刊类型引用(7)
1. 萧和,冯健雪,马秀如,张小勇,王林均,黄宝涛. 桩-土相互作用研究进展. 土工基础. 2024(03): 453-458 . 百度学术
2. 姜彦彬,何宁,李国维,吴哲辉,汪璋淳. 在机加载条件下桩承式路堤离心模型试验设计. 科学技术与工程. 2024(19): 8201-8207 . 百度学术
3. 郭帅杰,周亚东,宋绪国. 三角形布桩桩网复合地基桩土应力计算方法. 应用基础与工程科学学报. 2024(06): 1597-1609 . 百度学术
4. 姜彦彬,何斌,王艳芳,陈盛原,何宁. 桩承式路堤桩帽顶面土压测试代表性分析. 公路. 2022(04): 1-7 . 百度学术
5. 李威,周春儿,吴加武,董华钢,任红磊. 重载堆场桩网复合地基离心模型试验与数值模拟研究. 岩土工程学报. 2022(S2): 71-75 . 本站查看
6. 李立,曹文昭,刘洋,郑俊杰,李波. 桩承式加筋土结构拓宽路基工作特性离心模型试验. 岩石力学与工程学报. 2021(S2): 3357-3366 . 百度学术
7. 邱晓光. 复合地基技术在市政道路软弱路基处治中的应用. 江西建材. 2021(12): 175-177 . 百度学术
其他类型引用(5)