Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment
-
摘要: 针对海洋环境下钙质砂水泥土复合地基的耐久性和长期安全稳定性问题,利用海水作为侵蚀性介质对钙质砂水泥土进行室内浸泡试验,通过对海水环境下水泥土试样开展微型贯入试验、电镜扫描、能谱测试以及X射线衍射试验,分析了不同养护时间与不同水泥掺量对海水环境下钙质砂水泥土强度的影响规律以及微观结构特征。结果表明:钙质砂水泥土侵蚀破坏深度随养护时间的增长逐渐增大,随水泥掺量的增加逐渐减小,且水泥掺量的增加能有效地抑制海水侵蚀性离子引起水泥土侵蚀破坏深度的发展;与未侵蚀层相比,侵蚀层的孔隙增加,Ca含量降低,且Ca的含量与水泥土的强度变化呈现出相似规律。在海水环境中,水泥土的强度变化是增长和侵蚀破坏两种作用的共同结果,在此过程中水泥土易发生Ca的溶出现象,最终导致水泥土的强度降低。Abstract: Aiming at the durability and long-term stability problems of calcareous sand-cemented soil composite foundation in the marine environment, the seawater is used as the corrosive medium to perform an indoor soaking test on the calcareous sand cemented soil, and the micro cone penetration, scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction tests are conducted to analyze the strength and microstructure characteristics of calcareous sand cemented soil with different curing time and cement ratios under seawater environment. The results show that the erosion depth of calcareous sand-cemented soil gradually increases with the increase of curing time and gradually decreases with the increase of cement ratio, and the increase of cement ratio can effectively inhibit the erosion depth of cemented soil caused by seawater corrosive ions. Compared with those of the non-eroded layer, the porosities of microstructure are lager and the Ca contents are less in the eroded layer, and the Ca content and the strength of cemented soil show a similar rule. Under seawater environmental conditions, the strength change of cemented soil is the common result of the effects of growth and erosion. In this process, the cemented soil is prone to the phenomenon of Ca dissolution, which finally leads to the strength reduction of cemented soil.
-
0. 引言
三峡工程运用后,进入长江中下游河道的水量略有减少,沙量急剧减少使得坝下游河流发生长距离、长时间的河床冲刷,导致崩岸年年发生[1]。据不完全统计,至2016年的60余年来,长江中下游累计崩岸长度达1600余公里。目前,长江中下游河道崩岸仍在发生,不仅影响防洪安全及河势稳定,还严重威胁沿江经济社会发展和群众生命财产安全。
目前学者按崩塌力学模式将崩岸主要分为浅层崩塌、平面滑动、圆弧滑动及悬臂崩塌(坍落)等[2]。崩岸模式与土体特性、地层特征、水流条件等有关[3-5],并且崩岸是一个动态不连续的过程,作用机制较为复杂,其机理和变形特征尚未完全揭示。
学者通常采用模型试验、数值分析方法对河道岸坡的稳定性及崩岸过程进行分析。模型试验一般采用缩尺河工模型试验[6],包括定床和动床模型,能较好的反映水流对岸坡的冲刷作用,但其对岸坡土体的模拟主要采用不同粒径的模型砂,在自重应力影响、土体特性、尺寸效应等方面存在不足,无法模拟岸坡土体的真实状态。数值模型包括一维尺度的BSTEM模型和CONCEPTS模型,以及在此基础上进行的改进和优化[7-9]。此外,有限元方法也用来对岸坡稳定性进行分析,能较好地得到水位变化条件下崩塌前岸坡的应力场变化规律。但这些数值方法无法进行开裂和崩塌等非连续大变形的分析计算,无法得到岸坡崩塌的变形过程。
本文以长江中游荆江河段南五洲长江村崩岸段作为代表,通过现场勘察获取地层与土体特性参数,采用简化岸坡模型开展离心模型试验研究,并与DDA非连续大变形数值分析结果进行对比,揭示水流冲刷条件下崩岸的变形特征。
1. 岸坡土体特性
南五洲长江村崩岸段位于公安河段长江右岸公安县杨家村镇长江村,起点为荆72断面处,崩岸长度约2350 m,如图 1所示。钻探断面位于民堤长支右36处的堤外滩地上,该处崩岸状态稳定。沿垂直河道方向共设3个钻孔ZK03、ZK04和ZK05,离河岸坡顶的距离分别为5,10,20 m。
三个钻孔的深度依次为35.30,35.00,32.00 m,均进入砂层中,钻孔取样揭示该处土层垂直方向从上到下依次为素填土、黏性土、粉砂和细砂,表现为典型的二元结构特征。表层素填土厚为1 m左右,黏土层与砂层的界线在19.40~22.00 m范围,黏土层厚18.4~21.00 m,以ZK03号钻孔为例,地层分布如图 2所示。
对3个钻孔中的黏性土从上到下进行分层取样开展室内物理力学试验,并对砂层进行原位标贯试验,得到地层土体分布特征与物理力学性质。其中黏性土室内试验结果列在表 1中,第一层表现为黄褐色,深度为1.0~4.2 m,塑性指数IP10为13.4~16.5;第二层为灰褐色,深度为4.0~14.0 m,IP10为13.0~13.7;第三层为灰褐色,深度为11.2~22.0 m,IP10为14.4~15.1。据湖北省地方标准《建筑地基基础技术规范》(DB42/242—2014),钻孔揭示的该地层黏性土塑性指数IP10在(10,17]范围内,均为粉质黏土。
表 1 土体物理力学特性试验结果Table 1. Test results of physical and mechanical properties of soil mass地层代号 土类名称 颜色 含水率
w湿密度ρ/
(kg·m-3)Gs 孔隙比
e饱和固结快剪 黏聚力
ccq/kPa内摩擦角
φcq/(°)②-1 粉质黏土 黄褐色 32.7%~33.5% 1.85~1.89 2.67~2.70 0.875~0.957 11.6~25.5
(18.7)21.1~24.1
(22.4)②-2 粉质黏土 灰褐色 29.8%~37.3% 1.83~1.92 2.66 0.798~0.996 9.7~11.8
(10.8)22.5~25.6
(23.8)②-3 粉质黏土 灰褐色 30.3%~39.6% 1.79~1.87 2.66~2.68 0.863~1.090 11.5~37.5
(17.8)21.6~24.7
(23.7)注:括号中的数字为平均值。 根据现场标准贯入试验结果,粉砂层密实度为稍密,细砂层密实度为中密到密实,如图 2所示。
因此,根据现场的地质勘察与土体特性研究,崩岸段的地层具有典型的二元结构特征,表现为上部为粉质黏土层,下部位粉细砂层。
2. 离心模型试验
2.1 模型装置
试验离心机为长江科学院CKY-200现代化多功能土工离心机,有效容量200g·t;最大加速度为200g,无级调速,调速精确到0.1g;吊篮净空尺寸1.2 m×1.0 m×1.5 m。使用的模型箱尺寸(长×宽×高)1.0 m×0.4 m×0.8 m,如图 3所示。
基于崩岸段断面实测地形,为研究坡顶崩退变形特征,采用如图 3所示的简化模型,下部为直立坡面,上部倾斜坡面。模型制作时预设掏空长度为20 cm,位于岸坡土体下部前段,对应斜坡面和坡顶前部。通过设置遇水软化解体的材料在加载过程中加水使其解体模拟掏空;后端采用刚性地基,不会发生掏空等变形。
2.2 试验过程
(1)模型制备
岸坡使用的土体为南五洲长江村崩岸段现场钻孔取样所得的②-2及②-3层粉质黏土。以5 cm为一层,计算每层所需土的质量,并用铅块捣实至设定刻度,每完成一层后作刨毛处理,以消除击实导致土体渗透性不均匀的问题。另外,在该阶段需要同时埋置示踪标记点等相关监测装置。
(2)监测指标
a)岸坡顶面沉降:采用3个激光位移计沿模型中线水平方向进行监测岸坡顶面关键位置处的沉降情况,激光位移计量程为30~80 mm,分辨率为8 μm。
b)岸坡内部沉降:利用模型土体内埋设的分层沉降标监测岸坡内部的沉降变形。
c)视频监控:设置两个监控摄像头,在试验全过程中实时监控模型断面和内部坡体变形的变化过程。
(3)加载过程:
调试完成后,逐步加载至15g,运行一段时间待岸坡变形稳定后,注水使支撑块软化解体,模拟淘刷过程,最后加载至20g,加速崩岸过程。试验中,在加载至15g过程中岸坡发生滑坡,第一级稳定荷载降至10g,待稳定后再加载至15g模拟淘刷,至20g加速崩塌,如图 4所示。
2.3 试验结果分析
根据整个试验的观察,试验过程中出现了两个阶段的岸坡破坏。第一阶段发生在离心加速度逐渐增大至14g左右时,此时模型箱内未注水,岸坡坡脚底部的支撑仍有效存在。根据离心模型试验缩尺比例,在14g离心加速度作用下,整个坡体放大比例后直立坡面高度达到4.2 m,在离心力作用下,坡面起初发生明显水平向外的变形(图 5(a)),之后在坡体顶部后方出现竖向裂缝,并不断扩大,坡顶竖向位移大小关系为LDS3 > LDS2 > LDS1(图 4),即越靠近坡顶角竖向位移越大。紧接着坡体发生滑坡,发生明显的错动变形(图 5(b)),靠近坡顶角的竖向位移突变,监测数据超出量程,滑坡体呈整体沿滑裂面下滑破坏。
第二阶段是在第一阶段滑坡完成、坡体继续运行一段时间后,离心加速度增加至15g并持续运行,加水使底部支撑块软化解体的基础上发生的。在模拟淘刷过程中,支撑块逐渐软化解体,上部土体逐渐向下变形,临空坡面处分层沉降标向下运动,坡体后方出现竖向裂缝(图 5(c)),随着底部支撑解体的逐渐完全,坡体上的竖向裂缝逐渐扩展,同时在坡底淘刷末端处也产生了竖向裂缝(图 5(d)),土体未表现出明显的悬空现象。之后进一步加载至20g离心加速度,裂缝逐渐扩展并变宽,上部土体发生明显的向下错动加向外转动变形(图 5(e)),土体表现为成块的突然崩落特征。由于模型箱中已崩塌土体逐渐占据了底部空间,使得坡面土体变形受限,无法发生进一步的崩塌,继续加载仅能使上部土体裂缝发展,最终破坏形态如图 5(f)所示,坡顶有明显的开裂,土体发生明显的“错动+转动”块状崩落。
在真实的河流冲刷条件下,从岸坡上崩塌下的土体会在高速水流作用下被冲走,已崩塌土体对岸坡进一步变形的阻碍作用以及对坡脚淘刷的防护作用不复存在,水流会进一步深入淘刷坡脚,导致岸坡持续崩塌,河岸不断后退。试验中表现为岸坡底部支撑进一步向内部失效,土体持续发生“错动+转动”变形,崩塌脱离岸坡。
3. 数值分析结果对比
针对具有完整1∶1坡比的岸坡,Xu等[10]、陈航等[11]采用DDA方法对由淘刷引起的崩岸全过程演化进行了数值模拟分析。采用逐步向内移除坡底刚性支撑来模拟淘刷过程,根据其分析结果,对于具有二元结构的完整岸坡,在底部砂层受水流作用逐步淘刷过程中,其受力和变形主要分为三个阶段。分别为坡面逐渐崩塌阶段、坡面转坡顶过渡阶段(图 6)以及坡顶崩退阶段[11]。其中DDA数值分析中反映的坡面转坡顶过渡阶段与试验第二阶段的变形特征变形特征基本一致。即在跨越坡顶角的土体崩塌过程中,坡顶处出现垂直顶部的破裂面,基底处出现近似直立的破裂面;随着土体的不断崩塌,坡体内部的受力与变形在逐渐调整与演化,拉裂缝不断发展延伸,土体沿裂缝发生塌落,最终在坡体上部形成了近似直立的坡面,原始坡面已全部崩塌。该近似直立的坡面与南五洲长江村崩岸水面上的表现形态一致。
4. 结论
对长江中游荆江河段南五洲长江村崩岸段进行勘察,得到岸坡土体特性,并开展离心模型试验,对具有二元结构的岸坡在淘刷作用下发生崩岸的变形规律进行研究,得到以下结论:
(1)钻孔揭示的地层结构从上到下依次为素填土、粉质黏土、粉砂和细砂,黏性土层主要为粉质黏土,具有典型的二元结构特征。
(2)离心模型试验模拟了坡脚淘刷的条件,重现了岸坡崩塌的过程,主要经历了坡体上部产生竖向裂缝并逐渐扩展、坡底淘刷末端处产生竖向裂缝、裂缝逐渐扩展并变宽、上部土体发生明显的向下错动加向外转动变形,表现为“错动+转动”的突然崩落特征。
-
-
[1] COOP M R. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626. doi: 10.1680/geot.1990.40.4.607
[2] GHAZALI F M, SOTIROPOULOS E, MANSOUR O A. Large-diameter bored and grouted piles in marine sediments of the Red Sea[J]. Canadian Geotechnical Journal, 1988, 25(4): 826-831. doi: 10.1139/t88-090
[3] 房靖超, 陈涛, 何岩东, 等. 珊瑚砂层注浆的固化技术研究[J]. 海南大学学报(自然科学版), 2016, 34(3): 264-269. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDK201603011.htm FANG Jing-chao, CHEN Tao, HE Yan-dong, et al. Solidification technology of coral sand[J]. Natural Science Journal of Hainan University, 2016, 34(3): 264-269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDK201603011.htm
[4] HARA H, HAYASHI S, SUETSUGU D, et al. Study on the property changes of lime-treated soil under sea water[J]. Doboku Gakkai Ronbunshuu C/JSCE Journal of Geotechnical and Geoenvironmental Engineering, 2010, 66(1): 21-30.
[5] 刘泉声, 屈家旺, 柳志平, 等. 侵蚀影响下水泥土的力学性质试验研究[J]. 岩土力学, 2014, 35(12): 3377-3384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412005.htm LIU Quan-sheng, QU Jia-wang, LIU Zhi-ping, et al. Experimental study of mechanical properties of cemented soil under corrosion influence[J]. Rock and Soil Mechanics, 2014, 35(12): 3377-3384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412005.htm
[6] 杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201013.htm YANG Jun-jie, SUN Tao, ZHANG Yue-chen, et al. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201013.htm
[7] 闫楠. 滨海相软土场地形成的水泥土强度衰减过程研究[D]. 青岛: 中国海洋大学, 2015. YAN Nan. Research on Strength Deterioration Process of Cement Soil in Site of Marine Soft Soil[D]. Qingdao: Ocean University of China, 2015. (in Chinese)
-
期刊类型引用(1)
1. 陈娟,姜命强,赵源. 基于多目标优化的动水注浆参数设计. 水利规划与设计. 2025(02): 76-79+102 . 百度学术
其他类型引用(1)