Resonant column tests on maximum shear modulus and damping ratio of coral sand
-
摘要: 针对我国南海某岛的珊瑚砂,通过开展共振柱试验研究小应变(10-4~10-6)条件下试样的相对密实度、围压对珊瑚砂剪切模量和阻尼比的影响规律。试验结果表明:相对密实度相同的试样,珊瑚砂的最大剪切模量随围压的增加而增大,最小阻尼比则随围压的增加而减小;在同一围压条件下固结的试样,最大剪切模量随相对密实度的增加而增大,阻尼比则随相对密实度的增加而减小。基于试验数据建立了考虑围压及相对密实度影响的珊瑚砂最大剪切模量和阻尼比的变化规律,可以为我国南海珊瑚砂区域的基础设施建设提供基础数据和技术支撑。Abstract: The resonant column tests on the effects of relative density and confining pressure on the maximum modulus and damping ratio of coral sand in South China Sea under small strain are performed. The test results show that, for the samples with the same relative density, the maximum shear modulus of coral sand increases with the increasing confining pressure, while the damping ratio decreases with the increasing confining pressure. For the samples under the same condition of confining pressure, the maximum shear modulus of coral sand increases with the increasing relative density, while the damping ratio decreases with the increasing relative density. Based on the test data, the variation rules of the maximum shear modulus and damping ratio of coral sands considering confining pressure and relative density are established, which can provide the basic data and technical support for infrastructure construction in the coral sand areas of South China Sea.
-
Keywords:
- coral sand /
- relative density /
- confining pressure /
- maximum shear modulus /
- damping ratio
-
0. 引言
随着一带一路和海洋强国战略的逐步实施,珊瑚岛礁已成为保卫祖国领海完整和维护海洋权益的基地。珊瑚砂广泛分布于我国南海海域,是岛礁建设的主要材料,珊瑚砂特殊的发育环境、物质组成及结构导致其具有独特的物理力学性质[1]。珊瑚砂的碳酸钙含量极高,以方解石和文石的形式存在,与陆源石英砂相比,其具有低强度、高孔隙比、形状不规则、易破碎、颗粒易胶结等特殊工程性质,使得其受力变形特性与普通陆源石英砂差别较大。南海岛礁及其国防与民用工程设施建设受台风、涨潮、退潮、地震等动荷载影响较大,因此,研究珊瑚砂的动力参数对其动力特性研究具有重要意义。
小应变幅值条件下,在风、浪、流及地震等动荷载作用下的动力响应分析是港口、码头及近海建筑物受力变形研究的重点,动剪切模量和阻尼比是动力响应分析中的两个重要参数。关于小应变幅值条件下动剪切模量和阻尼比的研究多集中于砂土[2-4]、红黏土[5]、尾矿砂[6]、黄土[7]、混凝土[8]等。众多研究成果表明,小应变条件下,干砂在不同应力水平条件下的最大剪切模量和阻尼比为常数,但同一应力水平条件下的试样在饱和状态时由于Biot流导致其阻尼比与干试样不同[2]。西澳大利亚生物成因砂在各向异性应力路径条件下的试验研究表明,小应变条件下的最大剪切模量和阻尼比取决于试样的应力比[3]。德国四种干砂试样的共振柱与弯曲元对比试验发现,最大剪切模量与围压和孔隙比的定性关系相同,随围压的增大而增大,随孔隙比的增大而减小,但弯曲元试验中,最大剪切模量随脉冲频率减小而减小,其影响程度随围压增大而减小,衰减程度与砂土的类型有关[4]。红黏土的动剪切模量与动剪应变的关系曲线随着围压的增大逐渐趋于“直线”关系,动剪切模量衰减较慢,重塑红黏土的压实度较高,颗粒间接触面积大、触点多,应力波在土体中传播速度更快、更深,能量衰减较小,其阻尼比较其他类型土体小[5]。尾矿砂的最大动剪切模量随固结压力和干密度的增大而增大,随含水率的增大而减小;最大阻尼比随固结压力和干密度的增大而减小,但对含水率的变化不太敏感[6]。压实非饱和黄土干湿循环过程中,最大剪切模量随基质吸力的增大而增大,再随吸力的减小而减小,而在同一吸力作用下,湿润段的最大剪切模量大于干燥段[7]。
目前对珊瑚砂小应变幅值条件下的动力特性研究较少,本文通过开展共振柱试验来研究小应变幅值条件下珊瑚砂的最大剪切模量和阻尼比两个动力参数,进而分析研究相对密实度和围压等因素影响下的珊瑚砂最大剪切模量和阻尼比的变化规律,以求为我国南海岛礁建设的动力响应分析提供参考和依据。
1. 共振柱试验
1.1 试验设备
本文试验采用由美国GCTS公司生产的TSH-100型共振柱仪(如图1),该仪器为一端固定一端自由型共振柱。共振柱试验系统包括激振系统、量测系统和试样容器,其中激振系统由扭转激振力和轴向激振力组成,量测系统由位移、速度、加速度及记录设备等组成,试样容器包括压力室、底座、制样设备、加压系统、固结排水系统等。该仪器所能测量的应变范围为10-6~10-4,最大围压为500 kPa,试样尺寸为Ф50 mm×100 mm。
仪器振动系统的质量-阻尼-弹簧特性和试样的质量-阻尼-弹簧特性将共同影响试验结果,因此试验前需对试验仪器各部件的特征常数进行标定,以对计算结果作相应修正。仪器标定时将标定杆替代试样固定在试样底座上,安装好上压板、传感器、激振器和驱动板,由激振器施加激振力,连续改变频率直至系统发生共振,测定标定杆的共振频率。然后,将配重块安装在标定杆上,以同样的方法测定标定杆加配重块的共振频率。根据该二共振频率及标定杆和配重块的质量惯性矩计算试样顶部附加物的质量惯性矩,即得试验仪器的特征常数。
1.2 物理性指标
试样为南海某岛礁珊瑚砂,最大粒径为5 mm,不均匀系数Cu为1.9,曲率系数Cc为1.1,级配均匀,其中0.5~1.0 mm粒径范围的颗粒含量达64%,试样的粒径分布曲线详见图2,试样的基本物理性指标详见表1。本次试验采用烘干料,试样尺寸为Ф50 mm×100 mm,根据试验要求的干密度、试样尺寸计算并称取所需土料。试样采用分层击样法制备,共分三层,制备完成后采取抽气法进行试样饱和。为保证试验结果的可比性,所有试样采用相同级配。
表 1 珊瑚砂的基本物理性指标Table 1. Basic physical parameters of coral sand试样 Gs emax emin ρdmax/(g·cm-3) ρdmin/(g·cm-3) 珊瑚砂 2.78 1.242 0.917 1.45 1.24 1.3 试验方案
先在试样自由的一端施加扭转激振力,试样发生共振后迅速切断电源,释放扭力,使试样自由振动。由于阻尼作用,扭转振幅越来越小,最后停止振动。由于振动应变小于10-4,可认为对试样无损伤,故可以采用同一个试样做不同围压下的共振柱试验。
试样相对密实度取0.65,0.75,0.85,0.95,分别在围压100,200,300,400 kPa条件下固结,进而测定各试样的共振频率及阻尼比。试验方案详见表2。
表 2 试验方案汇总表Table 2. Summary of test schemes序号 相对密实度Dr 制样干密度ρd/(g·cm-3) 孔隙比e 围压σ3/kPa 固结形式 1 0.65 1.37 1.031 100 等向固结 2 200 3 300 4 400 5 0.75 1.39 0.998 100 6 200 7 300 8 400 9 0.85 1.41 0.966 100 10 200 11 300 12 400 13 0.95 1.44 0.933 100 14 200 15 300 16 400 2. 试验结果与分析
针对4种相对密实度试样,分别在围压100,200,300,400 kPa条件下固结稳定后,在试样顶部施加扭转激振力,测得试样的共振频率和阻尼比,进而根据仪器标定的特征常数、试样的密度、高度及质量惯性矩计算试样的最大剪切模量。通过分析不同相对密实度试样在不同围压条件下的最大剪切模量和阻尼比,研究珊瑚砂最大剪切模量和阻尼比的变化规律,为珊瑚砂地基基础的动力响应计算分析提供可靠数据。
2.1 围压对珊瑚砂动力参数的影响
以相对密实度为0.85的试样为例,该试样在100,200,300,400 kPa围压条件下固结稳定后,对试样顶部施加扭转激振力并迅速切断电源,释放扭力,使试样自由振动,根据测得的试样共振频率计算所得的最大剪切模量及对应的阻尼比详见图3。
由图3可见:
(1)珊瑚砂的最大剪切模量随围压的增加呈幂函数增大趋势,这主要是由于试样随着固结围压的增加,试样颗粒发生移动或翻滚使得颗粒重组,导致孔隙比逐渐减小,试样更加密实,颗粒与颗粒之间的接触面积增大,剪切波在试样中的传播速度加快,试验测得的共振频率随围压的增加而增大,故最大剪切模量随围压的增加而增大,但增大的幅度逐渐减小。
(2)珊瑚砂发生共振时对应的阻尼比随围压的增大而减小,但减小的幅度呈减小趋势,这主要是由于试样在固结过程中,随着孔隙水不断排出,颗粒间孔隙水的体积逐渐减小,颗粒发生滚动或移动,颗粒重组,颗粒与颗粒之间接触更加紧密,使得剪切波在试样中传播速度加快、能量衰减较慢,且衰减的速度逐渐减小。
2.2 相对密实度对珊瑚砂动力参数的影响
以100 kPa的围压为例,相对密实度为0.65,0.75,0.85,0.95的试样在该围压条件下固结稳定后,对试样顶部施加扭转激振力并迅速切断电源,释放扭力,使试样自由振动,根据测得的试样共振频率计算所得的最大剪切模量及对应的阻尼比详见图4。
由图4可知:
(1)珊瑚砂的最大剪切模量随相对密实度的增加呈线性增加趋势,这主要因为试样相对密实度越大,孔隙比越小,试样愈加密实,颗粒与颗粒之间的接触面积增大,剪切波在试样中的传播速度增大,试验测得的共振频率随相对密实度的增加而增大,故最大剪切模量随相对密实度的增加而增大。
(2)珊瑚砂发生共振时对应的阻尼比随相对密实度的增大而减小,但减小的幅度呈减小趋势,这主要是由于试样的相对密实度越大,孔隙比越小,颗粒间孔隙的体积越小,颗粒与颗粒之间接触得更加紧密,使得剪切波在试样中传播速度增大、能量衰减越慢,且衰减的速度逐渐减小。
2.3 珊瑚砂最大剪切模量和阻尼比的变化规律
相对密实度为0.65,0.75,0.85,0.95的试样在100,200,300,400 kPa围压条件下固结,各试样的最大剪切模量及对应的阻尼比详见图5。由于试样的阻尼比
λ 和相对密实度Dr为无量纲量,将最大剪切模量Gmax和围压σ3 分别除以大气压强pa转化为无量纲量。由图5可见:
(1)相对密实度相同的珊瑚砂试样,其最大剪切模量Gmax随围压
σ3 增加呈幂函数增加趋势,即Gmax/pa= k(σ3 /pa)n,不同相对密实度试样的Gmax随σ3 增加的速率基本一致,当围压σ3 等于大气压强pa时,Gmax的取值随相对密实度Dr的增加而增大,显然最大剪切模量Gmax与围压σ3 和相对密实度Dr密切相关,即Gmax= f (σ3 ,Dr),由于不同相对密实度试样的n值基本一致,则k=f(Dr),不同相对密实度试样的k值如图6所示,显然k与Dr具有较好的线性关系,则Gmax/pa=(α Dr+β )(σ3 /pa)n,α ,β ,n为材料参数,针对本文研究的珊瑚砂,α =246.9,β =456.3,n=0.49。(2)相对密实度相同的珊瑚砂试样,其阻尼比
λ 随围压σ3 增加呈线性减小趋势,即λ =A(σ3 /pa)+F,不同相对密实度试样的阻尼比λ 随围压σ3 增加而减小的速率基本一致,即A值相同。但当围压σ3 等于大气压强pa时,各试样的阻尼比大小存在差异,随相对密实度的增加而减小,即F=g(Dr),不同相对密实度试样的F值如图7所示,显然F与Dr具有较好的线性关系,则λ =A(σ3 /pa)+(B Dr +C),A,B,C为材料参数,针对本文研究的珊瑚砂,A=0.25,B=3.12,C=3.81。3. 结论
对我国南海某岛的珊瑚砂开展共振柱试验,研究其在小应变幅值条件下的动力特性,得出如下主要结论:
(1)珊瑚砂的最大剪切模量随围压的增加呈幂函数增大趋势,随相对密实度的增加呈线性增加趋势。
(2)珊瑚砂发生共振时对应的阻尼比随围压的增大呈线性减小趋势,随相对密实度的增大也呈减小趋势,但减小的幅度逐渐减小。
(3)珊瑚砂的最大剪切模量及阻尼比是围压及相对密实度的函数,并建立了相互之间的相关关系,可以为珊瑚砂地区的动力特性研究提供参考和依据。
-
表 1 珊瑚砂的基本物理性指标
Table 1 Basic physical parameters of coral sand
试样 Gs emax emin ρdmax/(g·cm-3) ρdmin/(g·cm-3) 珊瑚砂 2.78 1.242 0.917 1.45 1.24 表 2 试验方案汇总表
Table 2 Summary of test schemes
序号 相对密实度Dr 制样干密度ρd/(g·cm-3) 孔隙比e 围压σ3/kPa 固结形式 1 0.65 1.37 1.031 100 等向固结 2 200 3 300 4 400 5 0.75 1.39 0.998 100 6 200 7 300 8 400 9 0.85 1.41 0.966 100 10 200 11 300 12 400 13 0.95 1.44 0.933 100 14 200 15 300 16 400 -
[1] 陈国兴, 朱翔, 赵丁凤, 等. 珊瑚岛礁场地非线性地震反应特征分析[J]. 岩土工程学报, 2019, 41(3): 405-413. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903002.htm CHEN Guo-xing, ZHU Xiang, ZHAO Ding-feng, et al. Nonlinear seismic response characteristics of a coral island site[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 405-413. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903002.htm
[2] QIU Tong, HUANG Yan-bo. Analytical and experimental studies on Biot flow-induced damping in saturated soil specimens in resonant column tests[J]. International Journal of Geomechanics, 2017, 17(8): 1-8.
[3] SENETAKISA Kostas, HE Huan. Dynamic characterization of a biogenic sand with a resonant column of fixed-partly fixed boundary conditions[J]. Soil Dynamics and Earthquake Engineering, 2017(95): 180-187.
[4] 柏立懂, 项伟, Stavros SAVIDIS A, 等. 干砂最大剪切模量的共振柱与弯曲元试验[J]. 岩土工程学报, 2012, 34(1): 184-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201023.htm BAI Li-dong, XIANG Wei, Stavros SAVIDIS A, et al. Resonant column and bender element tests on maximum shear modulus of dry sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201023.htm
[5] 李剑, 陈善雄, 姜领发, 等. 重塑红黏土动剪切模量与阻尼比的共振柱试验[J]. 四川大学学报(工程科学版), 2013, 45(4): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201304013.htm LI Jian, CHEN Shan-xiong, JIANG Ling-fa, et al. Resonant column test on dynamic shear modulus and damping ratio of the remolded red clay[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(4): 62-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201304013.htm
[6] 蔡晓光, 黄鑫, 孟凡超, 等. 中线法底流尾矿砂的共振柱试验研究[J]. 地震工程与工程振动, 2016, 36(6): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201606004.htm CAI Xiao-guang, HUANG Xin, MENG Fan-chao, et al. The resonant column test study of the central line under flow tailing sands[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(6): 30-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201606004.htm
[7] 徐洁, 赵文博, 陈永辉, 等. 非饱和黄土初始剪切模量与孔径分布试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1046.htm XU Jie, ZHAO Wen-bo, CHEN Yong-hui, et al. Experimental study on initial shear modulus and pore-size distribution of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 227-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1046.htm
[8] Papakonstantinou , CHRISTOS G. Resonant column testing on portland cement concrete containingrecycled asphalt pavement (RAP) aggregates[J]. Construction and Building Materials, 2018(173): 419-428.
-
期刊类型引用(6)
1. 黄爱广,蔡晓光,黄鑫,王磊,李思汉,袁超. 基于共振柱试验的堆积层滑坡滑带土动力特性研究. 防灾科技学院学报. 2024(03): 22-29 . 百度学术
2. 袁丽,崔振东,张忠良. Stoke固定-自由型共振柱实验系统测试原理及标定方法. 实验技术与管理. 2023(06): 68-73+89 . 百度学术
3. 池超凡,郑存波,谭书平,董学安,张志豪,周婕. 软黏土小应变剪切模量影响因素试验和模型研究. 建筑结构. 2023(S1): 3025-3029 . 百度学术
4. 王家全,张涛艺,唐毅,唐滢. 循环应力比与有效围压对北部湾海砂动力特性的影响. 实验力学. 2023(04): 507-516 . 百度学术
5. 季鹏越,张明霞,王晋宝,王亚军. 细粒含量对舟山砂动力特性的影响. 浙江海洋大学学报(自然科学版). 2023(05): 455-462 . 百度学术
6. 简涛,孔令伟,柏巍,王俊涛,刘炳恒. 含水率对原状黄土小应变剪切模量影响的试验研究. 岩土工程学报. 2022(S1): 160-165 . 本站查看
其他类型引用(3)