• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

三轴剪切过程中粗粒料颗粒破碎变化规律研究

吴二鲁, 朱俊高, 黄维, 刘忠

吴二鲁, 朱俊高, 黄维, 刘忠. 三轴剪切过程中粗粒料颗粒破碎变化规律研究[J]. 岩土工程学报, 2020, 42(12): 2330-2335. DOI: 10.11779/CJGE202012021
引用本文: 吴二鲁, 朱俊高, 黄维, 刘忠. 三轴剪切过程中粗粒料颗粒破碎变化规律研究[J]. 岩土工程学报, 2020, 42(12): 2330-2335. DOI: 10.11779/CJGE202012021
WU Er-lu, ZHU Jun-gao, HUANG Wei, LIU Zhong. Evolution law of particle breakage of coarse-grained soil during triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330-2335. DOI: 10.11779/CJGE202012021
Citation: WU Er-lu, ZHU Jun-gao, HUANG Wei, LIU Zhong. Evolution law of particle breakage of coarse-grained soil during triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330-2335. DOI: 10.11779/CJGE202012021

三轴剪切过程中粗粒料颗粒破碎变化规律研究  English Version

基金项目: 

国家重点研发计划项目 2017YFC0404801

国家自然科学基金项目 U1865104

国家自然科学基金项目 51479052

国家自然科学基金青年科学基金项目 51609098

详细信息
    作者简介:

    吴二鲁(1993—),男,博士研究生,主要从事土体基本性质及本构关系、土石坝工程研究。E-mail:170804010004@hhu.edu.cn

    通讯作者:

    朱俊高, E-mail:zhujungao@hhu.edu.cn

  • 中图分类号: TU43

Evolution law of particle breakage of coarse-grained soil during triaxial shearing

  • 摘要: 准确预测粗粒料在加载过程中颗粒破碎的变化规律,并将其应用于粗粒料的本构模型中具有重要意义。合理定义和精确计算颗粒破碎指标是准确研究加载过程中粗粒料颗粒破碎变化规律的保障。引入Einav的分形破碎指标,认为在目前的颗粒破碎指标中该指标最适合用来对比评价粗粒料的颗粒破碎程度,并利用连续级配土的级配方程代替分形级配方程进行破碎指标的准确计算。在此基础上,选取已有文献中的试验数据,对粗粒料三轴剪切过程中的颗粒破碎变化规律进行了研究,建立了一个可以描述三轴剪切过程中颗粒破碎指标与剪应变及平均正应力之间关系的数学模型,并验证了该模型的适用性。
    Abstract: Accurate prediction of the evolution law of particle breakage during loading process is of great significance to building the constitutive model for coarse-grained soil. The reasonable definition and accurate calculation of particle breakage indices are the guarantee to exactly study the evolution law of particle breakage during loading process. The fractal breakage index of Einav is introduced and considered as the most suitable one to compare and evaluate the breakage degree of coarse-grained soil among breakage indices. It is realized to accurately calculate the fractal breakage index by replacing fractal gradation equation with the gradation equation for continuous gradation soil. On this basis, the evolution law of particle breakage of coarse-grained soil is studied by selecting the experimental data in the existing literatures. A mathematical model is established to describe the relationship among particle breakage indices, shear strain and average normal stress during triaxial shearing, and the applicability of this model is validated.
  • 我国已建、在建的一批重大水利工程采用了特高心墙坝,如苗尾(131.3 m)[1]、毛尔盖(147 m)[2]、长河坝(240 m)[3]、糯扎渡(261.5 m)[4]、两河口(295 m)[5]、双江口(312 m)[6]、如美(315 m)等。心墙坝具有就地取材、适应复杂地形、施工机械健全的优点,但也存在一个直接关系到大坝安全性能的凸出技术难点:接触黏土与岸坡和心墙变形协调性问题。对于高心墙堆石坝来说,接触界面处复杂的应力和变形条件及可能存在的剪切裂缝,是导致事故发生的可能原因。

    接触黏土是心墙坝重要的特殊用途的土料。设置接触黏土的目的在于提高心墙与坝基岸坡接触部位抗冲刷能力和抗裂性能,保证心墙出现不均匀沉降时不与岸坡脱裂。接触黏土必须具备良好的塑性和黏性、良好的抗渗变形能力,一般采用高塑性黏土填筑[7-8]

    如美水电站位于西藏自治区芒康县境内,是澜沧江上游河段(西藏境内河段)规划一库七级开发方案的第五个梯级。工程规模为一等大(Ⅰ)型工程,采用砾石土心墙堆石坝,最大坝高315 m。心墙与岸坡之间设置水平厚度4 m的接触黏土层。研究接触黏土层在大坝填筑期和运行条件下的变形特性,分析是否有大剪切变形及剪切裂缝的产生可能,对于大坝的安全具有重要的理论和实际工程意义。因此,本文重点关注不同坝高区域内高塑性接触黏土层在坝体填筑加载过程中的变形,以及变形在竣工后的发展。

    土工离心模型试验技术[9]是一项崭新的土工物理模型技术。通过施加在模型上的离心惯性力使模型的重度变大,从而使模型的应力与原型一致,这样就可以用模型反映、表示原型。离心模型是各类物理模型中相似性最好的模型。我国岩土力学的开拓者、两院院士黄文熙先生称“离心模型是土工模型试验技术发展的里程碑”[10]

    试验在南京水利科学研究院NHRI60gt中型土工离心机上开展。该机的有效半径2 m,最大加速度200g,最大负荷300 kg;配有40路应变信号和20路电压信号高精度数据采集系统,以及图像实时监控采集系统。试验用模型箱的内部有效尺寸为700 mm× 450 mm×350 mm(长×高×宽),其一侧面为有机玻璃窗口,便于监控试验过程。

    通过数据图像分析(PIV)系统,记录试验过程中土体照片,该系统由高清摄像机、支持POE供电的Hub、无线路由器、监视PC机组成。试验时,通过摄像机透过模型箱一侧的有机玻璃板,实时记录模型土体在试验过程中的变化情况。对模型土体变形照片进行镜头校正后,应用PIV技术[11]进行分析,得到土体的变形情况。

    图 1中虚线框所示,沿着左侧坝基的岸坡,选择了4个不同高程的位置,开展4组接触黏土层变形特性离心模型试验(表 1)。模型几何比尺为1/20,每组试验分别模拟了特定上覆压力下(采用铅丸作为等效荷载),高度为6 m范围内的接触黏土层和部分心墙土体的变形情况。模型的布置如图 2~4

    图  1  试验模拟位置示意图
    Figure  1.  Model locations
    表  1  试验条件
    Table  1.  Details of tests
    编号 高程/m 上覆压力/MPa 岸坡情况
    L1 2850—2856 0.59 1∶1.2
    L2 2800—2806 1.23 1∶1.2
    L3 2764—2770 1.56 变坡处
    L4 2710—2716 2.33 1∶0.85
    下载: 导出CSV 
    | 显示表格
    图  2  模型布置图(L1,L2)
    Figure  2.  Model setup (L1, L2)
    图  3  模型布置图(L3)
    Figure  3.  Model setup (L3)
    图  4  模型布置图(L4)
    Figure  4.  Model setup (L4)

    试验需要模拟岸坡、接触黏土层、心墙。岸坡采用混凝土模拟。接触黏土和心墙土料均取自工程现场,级配如图 5

    图  5  试验土料级配曲线
    Figure  5.  Grain-size distribution curves of soils

    (1)在模型箱内浇筑混凝土,充分振捣、整平后进行养护(28 d以上),模拟河谷左侧的岸坡。

    (2)整理接触黏土和心墙防渗料(5 mm以下),剔除杂质,密封24 h后,采用四分法取样测定风干含水率[12];再按施工含水率分别进行配制,密封24 h以上备用。

    (3)采用先分层击实再切削成的方法制备接触黏土层。接触黏土施工含水率为14%,按98%压实度控制,制样干密度约为1.93 g/cm3

    (4)采用分层击实法制备防渗心墙。5 mm以下粒径心墙土料按照含水率6.3%配制,掺入5 mm以上级配料,拌和均匀后,加入模型箱中击实。击实时按98%压实度控制,制样干密度约为2.15 g/cm3

    (5)打开模型箱侧面有机玻璃,在模型土体侧面绘制变形网格和标记点。

    (6)安装模型箱侧面有机玻璃面(其上布置有固定的参考点,用于在PIV分析中把像素坐标转换为实际坐标),在模型土体上部加铅丸,模拟上部坝体的应力。将制备好的模型吊入离心机吊篮平台,调整配重。

    (7)开启离心机,逐级提高离心加速度至设计值,增加铅丸的自重,对模型进行分级加载,加载至设计上覆压力即认为上覆荷载施加稳定,而后稳定运行4 h(相当于原型约66.7 d),模拟长期稳定荷载作用。试验期间记录土体的图像。加载过程如表 2

    表  2  试验过程
    Table  2.  Loading procedures of tests
    编号 上覆压力/MPa 逐级加载过程/kPa(至设计压力后运行4 h)
    L1 0.59 0→148→295→442→590
    L2 1.23 0→308→615→922→1230
    L3 1.56 0→390→780→1170→1560
    L4 2.33 0→518→1036→1553→1942→2330
    下载: 导出CSV 
    | 显示表格

    (8)试验完成后停机。

    本文给出的试验结果均已换算至原型。

    图 6给出了4组模型填筑完成时(加载至设计上覆荷载)的土体变形矢量场(放大4倍)。可以直观地看出:上覆荷载越大变形越大;心墙土体在荷载下产生以竖向下沉为主的变形;接触黏土层与岸坡之间的相对变形较小,有轻微错动但没有明显的分离现象;接触黏土与心墙土体之间也没有错动,土体的变形是协调的。

    图  6  填筑完成时的变形矢量场(放大4倍)
    Figure  6.  Vector fields at completion moment (magnification of 4 times)

    图 7所示,接触黏土在荷载作用下发生了变形,对于接触黏土层中的某一点,变形量可以分解为沿坝基切向的剪切变形和沿坝基法向的压缩变形。本文选择模型顶部接触黏土与心墙结合点(土体变形最大点)进行分解,以开展进一步的分析。

    图  7  土体变形分解示意图
    Figure  7.  Decomposition of soil deformation

    图 8图 9给出了4组局部模型接触黏土最大压缩变形和剪切变形与上覆荷载的关系。可以发现:①接触黏土变形随着荷载逐渐增加,大体呈现出随着荷载对数线性增加的趋势;②压缩变形和剪切变形大体相当,接触黏土处于压剪状态;③接触黏土变形随荷载的发展程度,在坝基坡度较缓时较小,坝基坡度较陡时较大,在坡度变化处则介于两者之间。

    图  8  最大剪切变形与上覆荷载的关系
    Figure  8.  Relationship between shear deformation and vertical load
    图  9  最大压缩变形与上覆荷载的关系
    Figure  9.  Relationship between compression deformation and vertical load

    图 10图 11给出了坝体填筑完成后运行期接触黏土最大压缩变形和剪切变形随时间的发展情况。接触黏土层的压缩和剪切变形在运行期初期有所增加,而后增长速度较慢,平均约为0.8 mm/d;在试验所模拟的约66.7 d时间内,变形渐趋稳定,且始终保持压剪状态。

    图  10  上覆荷载稳定后剪切变形随时间的发展
    Figure  10.  Development of shear deformation after completion
    图  11  上覆荷载稳定后压缩变形随时间的发展
    Figure  11.  Development of compression deformation after completion

    通过4组局部模型试验,得到以下结论:

    (1)接触黏土层与岸坡之间的相对变形较小,有轻微错动但没有明显的分离现象;接触黏土与心墙土体之间也没有错动,土体的变形是协调的。

    (2)上覆荷载引起接触黏土产生垂直坝基的压缩变形和平行坝基的剪切变形,荷载越大变形越大;压缩和剪切变形均大体呈现出随着荷载对数线性增加的规律。

    (3)接触黏土变形随荷载的发展程度随岸坡的坡度而加剧,在坝基坡度较缓时较小,坝基坡度较陡时较大,在坝基坡度变化处则介于两者之间。

    (4)填筑完成后的运行期,接触黏土层的压缩和剪切变形在初期有所增加,而后变形增长速度较慢,平均约为0.8 mm/d;在试验所模拟的约66.7 d时间内,变形渐趋稳定。

    (5)填筑过程和运行期,接触黏土层压缩变形和剪切变形大体相当,接触黏土始终处于压剪状态。

  • 图  1   Hardin破碎指标定义

    Figure  1.   Definition of particle breakage index of Hardin

    图  2   Einav破碎指标定义

    Figure  2.   Definition of particle breakage index of Einav

    图  3   式(3)的适用性验证

    Figure  3.   Verification of applicability of Eq. (3)

    图  4   级配曲线面积S

    Figure  4.   Area of gradation curve

    图  5   BE的实测值与拟合值

    Figure  5.   Measured and fitting data ofBE

    图  6   堆石料B破碎指标的实测值与拟合值

    Figure  6.   Measured and fitting data of breakage index of coarse-grained soil B

    表  1   三轴剪切过程中的颗粒破碎试验数据

    Table  1   Test data of particle breakage during triaxial shearing

    围压/kPa剪应变εs/%平均正应力p/kPaBE/%
    0000
    5001.8712428.7
    5004.56142211.1
    5008.44149415.0
    50012.49146915.3
    50016.01142014.0
    10001.7520469.9
    10004.60234313.9
    10007.20255218.2
    100010.66253415.1
    100015.19262123.4
    15001.90276011.2
    15007.34350421.9
    15009.31359622.2
    150012.47354325.6
    150014.35360227.6
    20001.85333610.9
    20004.55406417.7
    20007.26448422.0
    200010.75465326.7
    200013.76461929.8
    下载: 导出CSV

    表  2   粗粒料B的颗粒破碎试验数据

    Table  2   Test data of particle breakage of coarse-grained soil B

    围压/kPa剪应变εs/%平均正应力p/kPaBE/%
    0000
    2004.4157010.6
    2009.9558014.4
    20013.4056015.6
    5003.37114011.6
    5007.53130018.7
    50014.30132023.1
    10002.60180012.2
    10008.56237026.0
    100015.20248032.1
    15001.63216013.2
    15005.34301030.2
    150016.30357041.4
    下载: 导出CSV
  • [1] 孙逸飞, 刘汉龙, 杨贵. 考虑颗粒破碎引起级配演变的粗粒料屈服函数研究[J]. 岩土力学, 2013, 34(12): 3479-3484. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312021.htm

    SUN Yi-fei, LIU Han-long, YANG Gui. Yielding function for coarse aggregates considering gradation evolution induced by particle breakage[J]. Rock and Soil Mechanics, 2013, 34(12): 3479-3484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312021.htm

    [2]

    XU M, SONG E X, CHEN J F. A large triaxial investigation of the stress-path-dependent behavior of compacted rockfill[J]. Acta Geotechnica, 2012, 7(3): 167-175. doi: 10.1007/s11440-012-0160-0

    [3]

    ALONSO E E, TAPIAS M, GILI J. Scale effects in rockfill behaviour[J]. Geotechnical Letters, 2012, 3: 155-160.

    [4] 贾宇峰, 迟世春, 林皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. 岩土力学, 2009, 30(11): 3261-3267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911010.htm

    JIA Yu-feng, CHI Shi-chun, LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. Rock and Soil Mechanics, 2009, 30(1): 3261-3267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911010.htm

    [5]

    GUO W L, CAI Z Y, WU Y L, et al. Estimations of three characteristic stress ratios for rockfill material considering particle breakage[J]. Acta Mechanica Solida Sinica, 2019, 32(2): 215-229. doi: 10.1007/s10338-019-00074-x

    [6]

    TAPIAS M, ALONSO E E, GILI J. A particle model for rockfill behavior[J]. Géotechnique, 2015, 65(12): 975-994. doi: 10.1680/jgeot.14.P.170

    [7]

    XIAO Y, LIU H L. Elastoplastic constitutive model for rockfill materials considering particle breakage[J]. International Journal of Geomechanics, 2017, 17(1): 04016041. doi: 10.1061/(ASCE)GM.1943-5622.0000681

    [8]

    XIAO Y, LIU H L, DING X M, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031. doi: 10.1061/(ASCE)GM.1943-5622.0000538

    [9] 武颖利, 皇甫泽华, 郭万里, 等. 考虑颗粒破碎影响的粗粒土临界状态研究[J]. 岩土工程学报, 2019, 41(增刊2): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2008.htm

    WU Ying-li, HUANGFU Ze-hua, GUO Wan-li, et al. Influences of particle breakage on critical state of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2008.htm

    [10] 尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究:进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm

    YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm

    [11]

    SALIM W, INDRARATNA B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage[J]. Canadian Geotechnical Journal, 2004, 41(4): 657-671. doi: 10.1139/t04-025

    [12] 贾宇峰, 迟世春, 林皋. 考虑颗粒破碎的粗粒土剪胀统一本构模型[J]. 岩土力学, 2010, 31(5): 1381-1388. doi: 10.3969/j.issn.1000-7598.2010.05.006

    JIA Yu-feng, CHI Shi-chun, LIN Gao. Dilatancy unified constitutive model for coarse granular aggregates incorporating particle breakage[J]. Rock and Soil Mechanics, 2010, 31(5): 1381-1388. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.05.006

    [13] 米占宽, 李国英, 陈生水. 基于破碎能耗的粗颗粒料本构模型[J]. 岩土工程学报, 2012, 34(12): 1801-1811. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210008.htm

    MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui. Constitutive model for coarse granular materials based on breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 1801-1811. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210008.htm

    [14]

    LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, 1996, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)

    [15]

    LEE K L, FARHOOMAND L. Compressibility and crushing of granular soil in anisotropic triaxial[J]. Canadian Geotechnical Journal, 1976, 4(1): 68-86.

    [16]

    GUO W L, HUANG Y H, ANDY F, et al. Mathematical model revealing the evolution of particle breakage and particle-size distribution for rockfill during triaxial shearing[J]. European Journal of Environmental and Civil Engineering. doi: 10.1080/19648189.2018.1552898.

    [17]

    MARSAL R J. Large-scale testing of rockfill materials[J]. ASCE Journal of the Soil Mechanics and Foundation Engineering, 1967, 93(2): 27-43.

    [18]

    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.

    [19]

    EINAV I. Breakage mechanics-part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297.

    [20]

    COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163.

    [21] 陈镠芬, 高庄平, 朱俊高, 等. 粗粒土级配及颗粒破碎分形特性[J]. 中南大学学报(自然科学版), 2015, 46(9): 3446-3453. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509038.htm

    CHEN Liu-fen, GAO Zhuang-ping, ZHU Jun-gao, et al. Gradation of coarse grained soil and fractal geometry character of particle breakage[J]. Journal of Central South University (Science and Technology), 2015, 46(9): 3446-3453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201509038.htm

    [22] 孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

    KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al. Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

    [23] 田海, 孔令伟, 赵翀. 基于粒度熵概念的贝壳砂颗粒破碎特性描述[J]. 岩土工程学报, 2014, 36(6): 1152-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406027.htm

    TIAN Hai, KONG Ling-wei, ZHAO Chong. Characterization of particle breakage with grading entropy on shell sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1152-1159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406027.htm

    [24] 刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504011.htm

    LIU Han-long, QIN Hong-yu, GAO Yu-feng, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562-566. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504011.htm

    [25] 蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm

    CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, et al. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm

    [26] 张季如, 张弼文, 胡泳, 等. 粒状岩土材料颗粒破碎演化规律的模型预测研究[J]. 岩石力学与工程学报, 2016, 35(9): 1898-1905. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609019.htm

    ZHANG Ji-ru, ZHANG Bi-wen, HU Yong, et al. Predicting the particle breakage of granular geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1898-1905. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609019.htm

    [27]

    JIA Y F, XU B, CHI S C, et al. Research on the particle breakage of rockfill materials during triaxial tests[J]. International Journal of Geomechanics, 2017, 17(10): 04017085.

    [28] 郭万里. 粗粒土颗粒破碎演化规律及本构模型研究[D]. 南京: 河海大学, 2018.

    GUO Wan-li. Study on the Particle Breakage Evolution and Constitutive Model of Coarse-Grained Soils[D]. Nanjing: Hohai University, 2018. (in Chinese)

    [29]

    YANGZ Y, JUO J L. Interpretation of sieve analysis data using the box-counting method for gravelly cobbles[J]. Canadian Geotechnical Journal, 2001, 38(6): 1201-1212. http://www.researchgate.net/publication/325670496_Interpretation_of_sieve_analysis_data_using_the_box-counting_method_for_gravelly_cobbles

    [30]

    XIAO Y, LIU H L, YANG G, et al. A constitutive model for the state-dependent behaviors of rockfill material considering particle breakage[J]. Science China Technological Science, 2014, 57(8): 1636-1646.

    [31] 朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510029.htm

    ZHU Jun-gao, GUO Wan-li, WANG Yuan-long, et al. Equation for soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1931-1936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510029.htm

    [32] 吴二鲁, 朱俊高, 王龙, 等. 粗粒料的单参数级配方程及其适用性研究[J]. 岩土力学, 2020, 41(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003013.htm

    WU Er-lu, ZHU Jun-gao, WANG Long, et al. Gradation equation with a parameter of coarse-grained soil and its applicability[J]. Rock and Soil Mechanics, 2020, 41(3): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003013.htm

    [33]

    ZHU J G, GUO W L, WEN Y F, et al. New gradation equation and qpplicability for particle-size distributions of various soils[J]. International Journal of Geomechanics, 2018, 18(2): 04017155.

图(6)  /  表(2)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  29
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-18
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-11-30

目录

/

返回文章
返回