Particle size correlation of deformation parameters for rockfill materials
-
摘要: 堆石料变形参数的尺寸效应直接影响土石坝的变形预测,关系土石坝防渗体的变形协调,也是当前高土石坝的关键技术难题。基于前人的研究成果,根据不同尺寸试样之间的应力应变转换关系,推导了邓肯–张E–B模型各个参数与粒径的相关性。结果表明堆石料这类易破碎材料可以根据颗粒强度的粒径相关性和缩尺样的应力–应变曲线预测大尺寸试样的应力–应变关系。在邓肯–张模型中,尺寸效应较为明显的参数有φ0,K和Kb,参数Rf,n和mb是无粒径尺寸效应或尺寸效应不明显的参数。通过对比不同尺寸试样的邓肯–张模型参数的试验结果,进一步验证了该规律的合理性。Abstract: The size effect on the deformation parameters directly affects the deformation prediction of earth-rockfill dams and the deformation coordination of their seepage body. It is a key technical problem for high earth-rockfill dams. Based on the existing researches, the stress-strain relationship considering the size effect is demonstrated, and the particle size correlations for parameters of the Duncan-Chang model are deduced. The results show that the stress-strain relationship of samples with larger particles for crushable rockfill materials can be predicted based on the size-related strength of single particle and stress-strain curves of samples with smaller particles. In the Duncan-Chang model, the parameters with obvious size effect are φ0, K and Kb. The remaining parameters, such as Rf, n and mb, are invariant parameters or have no significant size effect. The rationality of this rule is further verified by comparing the predicted Duncan-Chang model parameters with the test results for samples with different particle sizes.
-
Keywords:
- size effect /
- particle breakage /
- stress-strain curve /
- Duncan-Chang model
-
-
表 1 不同尺寸试样的邓肯-张E-B模型参数汇总
Table 1 Parameters of Duncan-chang's E-B models for samples with different sizes
来源 dmax/mm φ0/(°) Δφ /(°) K n Rf Kb mb 英安岩堆石料[14] 试验 60 54.3 8.5 1200 0.45 0.80 900 0.06 试验 200 52.2 7.6 980 0.41 0.74 650 0.01 预测 60→200 53.3 8.5 1030 0.45 0.80 693 0.06 Pyramid dam泥岩[8] 试验 51 49.8 8.40 404 0.44 0.66 65.7 0.58 试验 152 49.0 8.44 314 0.48 0.66 56.3 0.59 预测 51→152 48.4 8.40 325 0.44 0.66 55.9 0.58 Purulia Dam石英片岩[15] 试验 25 48.3 6.86 613 0.45 0.64 792 0.003 试验 50 46.3 5.89 487 0.51 0.66 574 0.06 试验 80 45.0 5.93 443 0.51 0.70 422 0.13 预测 25→80 46.3 6.86 417 0.45 0.64 395 0.003 预测 50→80 45.62 5.89 424 0.51 0.66 440 0.06 石灰岩[27] 试验 0.3 44.68 7.63 112 0.13 0.77 36.8 0.19 试验 2.5 40.65 10.46 47.6 0.14 0.63 17.45 0.02 预测 0.3→2.5 42.22 7.63 59 0.13 0.77 20.17 0.19 Parbati Dam[15] 试验 20 48.4 5.99 509 0.78 0.67 457 0.60 试验 40 46.86 4.90 401 0.83 0.67 365 0.6 试验 80 46.67 5.36 330 0.85 0.66 336 0.56 Kol Dam[15] 试验 25 50.39 7.67 687 0.51 0.76 640 0.21 试验 50 49.87 7.78 603 0.55 0.76 486 0.28 试验 80 49.27 8.82 546 0.55 0.71 399 0.30 砂岩过渡料[28] 试验 60 46.2 5.6 850 0.35 0.82 400 0.13 试验 100 43.6 2.9 780 0.25 0.80 140 0.48 -
[1] HONKANADAVAR N P, KUMAR N, RATNAM M. Modeling the behaviour of alluvial and blasted quarried rockfill materials[J]. Geotechnical and Geological Engineering, 2014, 32(4): 1001-1015. doi: 10.1007/s10706-014-9776-1
[2] OVALLE C, FROSSARD E, DANO C, et al. The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data[J]. Acta Mechanica, 2014, 225(8): 2199-2216. doi: 10.1007/s00707-014-1127-z
[3] XIAO Y, LIU H L, CHEN Y M, et al. Particle size effects in granular soils under true triaxial conditions[J]. Géotechnique, 2014, 8(64): 667-672.
[4] 马刚, 周伟, 常晓林, 等. 堆石体三轴剪切试验的三维细观数值模拟[J]. 岩土工程学报, 2011, 33(5): 746-753. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105017.htm MA Gang, ZHOU Wei, CHANG Xiao-lin, et al. 3D mesoscopic numerical simulation of triaxial shear tests for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 746-753. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105017.htm
[5] 汪小刚. 高土石坝几个问题探讨[J]. 岩土工程学报, 2018, 40(2): 203-222. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802002.htm WANG Xiao-gang. Discussion on some problems observed in high earth-rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 203-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802002.htm
[6] ZHOU W, YANG L, MA G, et al. DEM analysis of the size effects on the behavior of crushable granular materials[J]. Granular Matter, 2016, 18(3): 1-11.
[7] 朱晟, 梁现培, 冯树荣. 基于现场大型承载试验的原级配筑坝堆石料力学参数反演研究[J]. 岩土工程学报, 2009, 31(7): 1138-1143. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200907030.htm ZHU Sheng, LIANG Xian-pei, FENG Shu-rong. Back analysis of mechanical parameters of naturally graded rockfill materials based on large-scale loading plate tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1138-1143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200907030.htm
[8] MARACHI N D, CHAN C K, SEED H B, et al. Strength and Deformation Characteristics of Rocfill Materials[R]. Berkeley: Department of Civil Engineering/Geotechnical Engineering, University of California, 1969.
[9] 傅华, 韩华强, 凌华. 堆石料级配缩尺方法对其室内试验结果的影响[J]. 岩土力学, 2012, 33(9): 2645-2649. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209018.htm FU Hua, HAN Hua-qiang, LING Hua. Effect of grading scale method on results of laboratory tests on rockfill materials[J]. Rock and Soil Mechanics, 2012, 33(9): 2645-2649. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209018.htm
[10] 武利强, 朱晟, 章晓桦, 等. 粗粒料试验缩尺效应的分析研究[J]. 岩土力学, 2016, 37(8): 2187-2197. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608009.htm WU Li-qiang, ZHU Sheng, ZHANG Xiao-hua, et al. Analysis of scale effect of coarse-grained materials[J]. Rock and Soil Mechanics, 2016, 37(8): 2187-2197. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608009.htm
[11] 朱晟, 王京, 钟春欣, 等. 堆石料干密度缩尺效应与制样标准研究[J]. 岩石力学与工程学报, 2019, 38(5): 1073-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905021.htm ZHU Sheng, WANG Jing, ZHONG Chun-xin, et al. Experimental study on scale effect of the dry density of rockfill material[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 1073-1080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201905021.htm
[12] 马刚, 周伟, 常晓林, 等. 堆石料缩尺效应的细观机制研究[J]. 岩石力学与工程学报, 2012, 31(12): 2473-2482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212012.htm MA Gang, ZHOU Wei, CHANG Xiao-lin, et al. Mesoscopic mechanism study of scale effects of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2473-2482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212012.htm
[13] 孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611003.htm KONG Xian-jing, LIU Jing-mao, ZOU De-gao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611003.htm
[14] 孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm KONG Xian-jing, NING Fan-Wei, LIU Jing-mao, et al. Scale effect of rockfill materials using super large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm
[15] VARADARAJAN A, SHARMA K G, ABBAS S M, et al. The role of nature of particles on the behaviour of rockfill materials[J]. Soils and foundations, 2006, 46(5): 569-584.
[16] FROSSARD E, HU W, DANO C, et al. Rockfill shear strength evaluation: a rational method based on size effects[J]. Géotechnique, 2012, 62(5): 415-427.
[17] NIETO-GAMBOA C. Mechanical Behavior of Rockfill Materials-Application to Concrete Face Rockfill Dams[D]. Paris: Ecole Centrale Paris, 2011.
[18] 郦能惠, 朱铁, 米占宽. 小浪底坝过渡料的强度与变形特性及缩尺效应[J]. 水电能源科学, 2001, 19(2): 39-42. LI Neng-hui, ZHU Tie, MI Zhan-kuan. Strength and deformation properties of transition zone material of xiaolangdi dam and scale effect[J]. International Journal Hydroelectric Energy, 2001, 19(2): 39-42. (in Chinese)
[19] MCDOWELL G R, AMON A. The application of Weibull statistics to the fracture of soil particles[J]. Soils and Foundations, 2000, 40(5): 133-141.
[20] LIM W L, MCDOWELL G R, COLLOP A C. The application of Weibull statistics to the strength of railway ballast[J]. Granular Matter, 2004, 6(4): 229-237.
[21] NAKATA Y, HYDE A F L, HYODO M, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567-583.
[22] 周海娟, 马刚, 袁葳, 等. 堆石颗粒压缩破碎强度的尺寸效应[J]. 岩土力学, 2017, 38(8): 2425-2433. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708035.htm ZHOU Hai-juan, MA Gang, YUAN Wei, et al. Size effect on the crushing strengths of rock particles[J]. Rock and Soil Mechanics, 2017, 38(8): 2425-2433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708035.htm
[23] JAEGER J C. Failure of rocks under tensile conditions[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967, 4(2): 219-227.
[24] BAGI K. Analysis of microstructural strain tensors for granular assemblies[J]. International Journal of Solids and Structures, 2006, 43(10): 3166-3184.
[25] DURÁN O, KRUYT N P, LUDING S. Analysis of three-dimensional micro-mechanical strain formulations for granular materials: evaluation of accuracy[J]. International Journal of Solids and Structures, 2010, 47(2): 251-260.
[26] BAGI K. Stress and strain in granular assemblies[J]. Mechanics of Materials, 1996, 22(3): 165-177.
[27] LEE D M. The Angles of Friction of Granular Fills[D]. Cambridge: University of Cambridge, 1992.
[28] 李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm LI Chong, HE Chang-rong, WANG Chen, et al. Study of scale effect of large-scale triaxial test of coarse-grained materials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm