Influences of soluble salt content on mechanical properties of Ili undisturbed loess
-
摘要: 为揭示非饱和伊犁原状黄土的湿、载屈服特性及水量变化特性,采用非饱和土三轴仪,开展不同易溶盐含量下的控制吸力的净平均应力增减试验、控制净平均应力的吸力增减试验和控制净围压和吸力的固结剪切试验,探究易溶盐含量对非饱和伊犁黄土变形、屈服和水量变化特性的影响规律。研究结果表明:含盐量对提高颗粒间的胶结作用存在临界值,在14~20 g/kg含盐量区间存在峰值屈服净平均应力、峰值屈服剪应力,且加载增湿屈服线和剪切屈服线最大;随含盐量增加,压缩性指标降低、固结排水量减小;含盐量对水量的影响主要在土水特征干燥曲线的过渡区,但对吸力增加屈服线影响不大;盐分过量和吸力降低均可使非饱和伊犁黄土产生屈服。Abstract: In order to reveal the loading collapse yield and moisture characteristics of the unsaturated Ili undisturbed loess, a series of net mean stress increase-decrease tests on control suction, suction increase-decrease tests on control net mean stress, consolidation shear tests on control net confining pressure and suction under different soluble salt contents are carried out by using the unsaturated soil triaxial apparatus. The effects of soluble salt content on the deformation, yield and moisture of the unsaturated Ili loess are studied. The results show that there is a critical value for salt content to improve the cementation between particles. There are the peak yield net mean stress and the peak yield shear stress between 14 and 20 g/kg of salt content, and the loading collapse yield curve and the shear yield curve are the maximum. The compressibility index and moisture change at the consolidation stage decrease with the increase of salt content. The influences of salt content on moisture are mainly in the transition region of soil water characteristic drying curve, but there are few effects on the suction increase yield curve. The unsaturated Ili loess can be yielded by being excessively salting and reducing suction.
-
Keywords:
- unsaturated soil /
- Ili loess /
- soluble salt /
- yield characteristic /
- moisture characteristic
-
-
表 1 试验方案及加荷顺序(以一个含盐量为例)
Table 1 Test schemes and loading sequence (taking a salt content as an example)
试验类型 应力状态 加荷过程/kPa 净平均应力循环 初始吸力 5/ 50/ 100/ 150 净平均应力 5→100→20→300→100→400 吸力循环 初始吸力 5 净平均应力 100 吸力 5→100→25→150 固结剪切 吸力 5/ 50/ 100/ 150 净围压 100/ 200/ 300 注: 净平均应力循环试验中净平均应力小于100 kPa时,荷载变化20 kPa/级;净平均应力大于100 kPa时,荷载变化50 kPa/级;吸力循环试验中荷载变化25 kPa/级。表 2 试样排水量的量测值与校正值比较
Table 2 Comparison between measured and corrected values of amount of water discharge from specimens
试验类型 含盐量θ/(g·kg-1) 量测值/cm3 校正值/cm3 差值/cm3 相对误差/% 吸力循环试验(p=100 kPa) 5 33.53 32.5 1.03 3.18 14 36.57 35.64 0.93 2.61 26 33.79 32.17 1.62 5.04 表 3 不同含盐量下的系数值
Table 3 Coefficients under different salt contents
系数 5 g/kg 8 g/kg 14 g/kg 20 g/kg 26 g/kg κ100均值 0.008 0.009 0.009 0.009 0.009 κ300均值 0.016 0.018 0.019 0.019 0.016 λs/(10-3) 1.3 0.8 0.4 0.7 0.8 表 4 应力交点处的
εv 和εw Table 4 Values of
εv andεw at intersection of stress类别 εv /%εw /%s/kPa 0 50 100 150 0 50 100 150 p/kPa 100 100 100 100 100 100 100 100 ① 9.7 3.5 2.5 2.4 7.8 1.6 3.0 0.4 ② 12.0 17.1 23.5 26.4 0.2 9.4 28.4 34.9 ③ 13.9 6.0 4.4 5 10.9 0.6 0.2 0.1 注: ①、②、③分别表示净平均应力循环、吸力循环和固结剪切试验。 -
[1] 张爱军, 邢义川, 胡新丽, 等. 伊犁黄土强烈自重湿陷性的影响因素分析[J]. 岩土工程学报, 2016, 38(增刊2): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2019.htm ZHANG Ai-jun, XING Yi-chuan, HU Xin-li, et al. Influence factors of strong self-weight collapsibility of Ili loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 117-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2019.htm
[2] 冯忠居, 乌延玲, 成超, 等. 板块状盐渍土的盐溶和盐胀特性研究[J]. 岩土工程学报, 2010, 32(9): 1439-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009027.htm FENG Zhong-ju, WU Yan-ling, CHENG Chao, et al. Salt-dissolution and salt-heaving characteristics of plate-like saline soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1439-1442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201009027.htm
[3] 闫亚景, 文宝萍, 黄志全. 可溶盐对兰州非饱和重塑黄土抗剪强度的影响[J]. 岩土力学, 2017, 38(10): 2881-2887. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710015.htm YAN Ya-jing, WEN Bao-ping, HUANG Zhi-quan. Effect of soluble salts on shear strength of unsaturated remoulded loess in Lanzhou city[J]. Rock and Soil Mechanics, 2017, 38(10): 2881-2887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710015.htm
[4] WANG Y G, ZHANG A J, REN W Y, et al. Study on the soil water characteristic curve and its fitting model of Ili loess with high level of soluble salts[J]. Journal of Hydrology, 2019, 578: 1-10.
[5] 康安栋, 王春艳, 张方涛, 等. 硫酸盐渍土变形特性试验研究[J]. 科学技术与工程, 2015, 15(18): 211-214, 230. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201518037.htm KANG An-Dong, WANG Chun-yan, ZHANG Fang-tao, et al. The experimental study of deformation behaviors of sulphate salt soil[J]. Science Technology and Engineering, 2015, 15(18): 211-214, 230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201518037.htm
[6] 颜荣涛, 赵续月, 于明波, 等. 盐溶液饱和黏土的等向压缩特性[J]. 岩土力学, 2018, 39(1): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801017.htm YAN Rong-tao, ZHAO Xu-yue, YU Ming-bo, et al. Isotropic compression characteristics of clayey soil saturated by salty solution[J]. Rock and Soil Mechanics, 2018, 39(1): 129-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801017.htm
[7] 徐安花, 房建宏. 盐渍土抗剪强度变化规律的研究[J]. 交通研究, 2005(11): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH200511014.htm XU An-hua, FANG Jian-hong. Study on laws of anti-shearing intensity of salty soil[J]. Transport Research, 2005(11): 54-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH200511014.htm
[8] 刘威. 罗布泊盐渍土静力特性试验研究[D]. 乌鲁木齐: 新疆农业大学, 2012. LIU Wei. Study on Static Characteristics Test of Saline Soil in Lop Nur[D]. Urumqi: Xinjiang Agricultural University, 2012. (in Chinese)
[9] 蔡正银, 吴志强, 黄英豪, 等. 含水率和含盐量对冻土无侧限抗压强度影响的试验研究[J]. 岩土工程学报, 2014, 36(9): 1580-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409005.htm CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, et al. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409005.htm
[10] 陈正汉, 孙树国, 方祥位, 等. 多功能土工三轴仪的研制及其应用[J]. 后勤工程学院学报, 2007, 23(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HQGC200704004.htm CHEN Zheng-han, SUN Shu-guo, FANG Xiang-wei, et al. Development and application of multi-function triaxial apparatus for soil[J]. Journal of Logistical Engineering University, 2007, 23(4): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HQGC200704004.htm
[11] ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
[12] 陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性[J]. 岩土工程学报, 1999, 21(1): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC901.016.htm CHEN Zheng-han. Deformation, strength, yield and moisture change of a remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 82-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC901.016.htm
[13] 方瑾瑾, 邵生俊, 李荣, 等. 真三轴条件下Q3黄土的屈服特性研究[J]. 岩石力学与工程学报, 2016, 35(9): 1936-1944. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609023.htm FANG Jin-jin, SHAO Sheng-jun, LI Rong, et al. Yield characteristics of Q3 loess in true triaxial tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1936-1944. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609023.htm