• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

花岗岩细观破裂特征及宏观尺度效应的颗粒流研究

孙闯, 敖云鹤, 张家鸣, 王帅

孙闯, 敖云鹤, 张家鸣, 王帅. 花岗岩细观破裂特征及宏观尺度效应的颗粒流研究[J]. 岩土工程学报, 2020, 42(9): 1687-1695. DOI: 10.11779/CJGE202009013
引用本文: 孙闯, 敖云鹤, 张家鸣, 王帅. 花岗岩细观破裂特征及宏观尺度效应的颗粒流研究[J]. 岩土工程学报, 2020, 42(9): 1687-1695. DOI: 10.11779/CJGE202009013
SUN Chuang, AO Yun-he, ZHANG Jia-ming, WANG Shuai. Particle flow of meso-fracture characteristics and macro-scale effect of granites[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1687-1695. DOI: 10.11779/CJGE202009013
Citation: SUN Chuang, AO Yun-he, ZHANG Jia-ming, WANG Shuai. Particle flow of meso-fracture characteristics and macro-scale effect of granites[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1687-1695. DOI: 10.11779/CJGE202009013

花岗岩细观破裂特征及宏观尺度效应的颗粒流研究  English Version

基金项目: 

国家重点研发计划项目 2017YFC1503101

国家自然科学基金项目 51704144

辽宁省“兴辽英才计划”项目 XLYC1807107

详细信息
    作者简介:

    孙闯(1983—),男,博士,副教授,主要从事岩石力学试验与数值计算方面的研究工作。E-mail:sunchuang88@163.com

  • 中图分类号: TU452

Particle flow of meso-fracture characteristics and macro-scale effect of granites

  • 摘要: 基于颗粒流方法,提出可变半径比例Clump结构的构建方法,分析颗粒流细观参数及细观结构特征对模拟岩石试件拉、压特性的影响规律,构建适用于花岗岩力学特性的Clump颗粒流结构模型,验证可变半径比例Clump结构及细观力学参数的可靠性;构建不同尺度的深部洞室颗粒流模型,分析深部围岩宏观破裂的尺度效应。研究表明,Ball和Clump模型的拉压比对细观力学参数变化的敏感度小,可变半径比例Clump模型的力学特性对粒径尺寸及比例变化的敏感度大;对比分析花岗岩室内试验与数值模拟的拉、压强度曲线及破裂模式,基于可变粒径比例的Clump计算模型与试验结果基本吻合;采用小尺度颗粒模型的深部围岩宏观破裂区主要以局部区域破碎为主,随着颗粒模型尺度逐渐增大,围岩表现出明显的剪切滑移及板裂破坏特征,构建的深部围岩颗粒流模型具有明显的宏观破裂尺度效应。
    Abstract: A formulation method for variable radius proportional clump structure is proposed according to the particle flow method. The effects of mesoparameters and meso-structural characteristics of particle flow on the compressive and tensile properties of simulated rocks are investigated. A clump particle flow structure is constructed, which is suitable for the mechanical characteristics of granite. The reliability of clump structure with variable radius ratio and meso-mechanical parameters is verified. The particle flow models for deep caverns with different sizes are developed, and the scale effect of macro fractures of deep surrounding rock is evaluated. The research results show that the tensile compression ratios of ball and clump models are less sensitive to the changes of meso parameters, and the mechanical properties of variable radius proportional clump model are more sensitive to the changes of particle size and proportion. Using the clump models with different particle size ratios, the compressive and tensile strength curves and fracture modes of numerical simulations and experimental tests are investigated. A good compliance is observed between the numerical and experimental findings. In the small-scale particle model, the fracture zones of the surrounding rocks are mainly broken in local area. By increasing the particle model scale, the clear shear-slip fracture characteristics appear. Simulating the fracture properties by the particle flow model for deep surrounding rocks exhibits clear macro-scale effects.
  • 图  1   接触黏结模型(CBM)法向与切向力学响应

    Figure  1.   Normal and tangential mechanical responses of CBM

    图  2   平行黏结模型(PBM)示意图

    Figure  2.   Diagrams of parallel bond model (PBM)

    图  3   颗粒模型中的Ball与Clump旋转机制

    Figure  3.   Ball and Clump rotation mechanism in particle model

    图  4   Clump结构建模方法示意图

    Figure  4.   Diagram of modeling method for Clump structure

    图  5   Clump/Ball粒径对试件宏观力学特性的影响

    Figure  5.   Effects of Clump/Ball particle size on macro-mechanical properties of specimens

    图  6   细观参数对Ball模型UCS/TS的影响

    Figure  6.   Effects of meso parameters on UCS/TS of Ball model

    图  7   细观参数对Clump模型UCS/TS的影响

    Figure  7.   Effects of meso parameters on UCS/TS of Clump model

    图  8   完整及含裂隙花岗岩试件

    Figure  8.   Complete and fractured granite specimens

    图  9   Clump模型示意图

    Figure  9.   Diagram of Clump model

    图  10   花岗岩单轴压缩试验与模拟应力–应变曲线对比

    Figure  10.   Comparison of uniaxial compression tests on granite and simulated stress-strain curves

    图  11   花岗岩巴西劈裂试验与模拟应力–应变曲线对比

    Figure  11.   Comparison of Brazilian splitting tests on granite and simulated stress-strain curves

    图  12   数值计算模型示意图

    Figure  12.   Diagram of numerical model

    图  13   不同尺度围岩破裂区及裂纹扩展区

    Figure  13.   Fracture zones and crack propagation zones of surrounding rock under different scales

    表  1   模型力学参数

    Table  1   Mechanical parameters of model

    参数Ball模型/ Clump模型
    颗粒刚度比kn/ks2.0
    颗粒摩擦系数µ0.2
    黏结模量E*/GPa2.0
    黏结刚度比kn*/ks*2.0
    黏结抗拉强度σb/MPa36
    黏结内聚力cb/MPa27
    摩擦角ƒ/(°)32
    下载: 导出CSV

    表  2   试验工况及力学参数

    Table  2   Test conditions and mechanical parameters

    单轴压缩试验巴西圆盘劈裂试验
    试件编号裂隙角度β/(°)单轴抗压强度σc/MPa试件编号裂隙角度γ/(°)抗拉强度σt/MPa
    无裂隙138.73   
    A3555.14111.85
    4560.91204.97
    B3548.033203.69
    4560.684404.07
    C3547.875602.27
    4556.586903.11
    下载: 导出CSV

    表  3   模型力学参数

    Table  3   Mechanical parameters of model

    参数取值参数取值
    Ball Rmin/mm0.26黏结模量E*/GPa2.0
    Ball粒径比RminRmax1.5黏结刚度比kn*/ks*2.5
    颗粒刚度比kn/ks2.0黏结抗拉强度σb/MPa32
    颗粒摩擦系数µ0.2黏结内聚力cb/MPa24
    Clump Rmin/mm0.6黏结摩擦系数µ*0.2
    Clump粒径比RminRmax1.5摩擦角ƒ/(°)32
    下载: 导出CSV

    表  4   花岗岩单轴压缩试验与模拟破裂特征

    Table  4   Uniaxial compression tests and numerical simulation fracture characteristics of granite

    试件类型ABC
    裂隙角度β/(°)354535453545
    颗粒流计算结果
    室内试验结果
    下载: 导出CSV

    表  5   花岗岩巴西劈裂试验与模拟破裂特征

    Table  5   Brazilian splitting tests and numerical simulation fracture characteristics of granite

    裂隙角度γ/(°)020406090
    颗粒流计算结果
    室内试验结果
    下载: 导出CSV
  • [1] 蒋明镜, 张宁, 申志福, 等. 含裂隙岩体单轴压缩裂纹扩展机制离散元分析[J]. 岩土力学, 2015, 36(11): 3293-3300, 3314. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511034.htm

    JIANG Ming-jing, ZHANG Ning, SHEN Zhi-fu, et al. DEM analyses of crack propagation in flawed rock mass under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36(11): 3293-3300, 3314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511034.htm

    [2] 夏明, 赵崇斌. 簇平行黏结模型中微观参数对宏观参数影响的量纲研究[J]. 岩石力学与工程学报, 2014, 33(2): 327-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402014.htm

    XIA Ming, ZHAO Chong-bin. Dimensional analysis of effects of microscopic parameters on macroscopic parameters for clump parallel-bond model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 327-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402014.htm

    [3] 胡波, 杨圣奇, 徐鹏, 等. 单裂隙砂岩蠕变模型参数时间尺度效应及颗粒流数值模拟研究[J]. 岩土工程学报, 2019, 41(5): 864-873. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905011.htm

    HU Bo, YANG Sheng-qi, XU Peng, et al. Time-scale effect of the creep model parameters and particle flow simulation of sandstone with a single crack[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 864-873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905011.htm

    [4] 邓树新, 郑永来, 冯利坡, 等. 试验设计法在硬岩PFC3D模型细观参数标定中的应用[J]. 岩土工程学报, 2019, 41(4): 655-664. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904010.htm

    DENG Shu-xin, ZHENG Yong-lai, FENG Li-po, et al. Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 655-664. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904010.htm

    [5]

    BAHRANI N, KAISER P K. Estimation of confined peak strength of crack-damaged rocks[J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 309-326. doi: 10.1007/s00603-016-1110-1

    [6]

    SHI C, YANG W K, YANG J X, et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code[J]. Granular Matter, 2019, 21(2): 3801-3813.

    [7] 丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报, 2015, 37(6): 1031-1040. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506010.htm

    CONG Yu, WANG Zai-quan, ZHENG Ying-ren, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506010.htm

    [8]

    STAVROU A, MURPHY W. Quantifying the effects of scale and heterogeneity on the confined strength of micro-defected rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 102: 131-143. doi: 10.1016/j.ijrmms.2018.01.019

    [9] 孙超, 刘芳, 蒋明镜, 等. 岩石抗压强度的尺寸效应及端部约束的离散元数值模拟[J]. 岩石力学与工程学报, 2014, 33(增刊2): 3421-3428. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2006.htm

    SUN Chao, LIU Fang, JIANG Ming-jing, et al. Size effect of compression strength and end constraint of rocks by distinct element simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3421-3428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2006.htm

    [10] 谢璨, 李树忱, 晏勤, 等. 不同尺寸裂隙岩石损伤破坏特性光弹性试验研究[J]. 岩土工程学报, 2018, 40(3): 568-575. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803029.htm

    XIE Can, LI Shu-chen, YAN Qin, et al. Photoelastic experiments on failure characteristics of fractured rock with different sizes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 568-575. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803029.htm

    [11]

    PENG J, LOUIS N Y, TEH C I. Effects of grain size-to- particle size ratio on micro-cracking behavior using a bonded-particle grain-based model[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 207-217.

    [12] 陈庆发, 郑文师, 牛文静, 等. 裂隙岩体几何与力学尺寸效应的关联性研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2857-2870. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1027.htm

    CHEN Qing-fa, ZHENG Wen-shi, NIU Wen-jing, et al. Correlation of the geometrical and mechanical size effects of fractured rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2857-2870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1027.htm

    [13] 梁昌玉, 李晓, 吴树仁. 中低应变率加载条件下花岗岩尺寸效应的能量特征研究[J]. 岩土力学, 2016, 37(12): 3472-3480. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612016.htm

    LIANG Chang-yu, LI Xiao, WU Shu-ren. Research on energy characteristics of size effect of granite under low/intermediate strain rates[J]. Rock and Soil Mechanics, 2016, 37(12): 3472-3480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612016.htm

    [14] 唐礼忠, 宋徉霖. 含非共面重叠型微裂隙类岩石试样单轴受压宏细观力学特性颗粒流模拟[J]. 岩石力学与工程学报, 2019, 38(11): 2161-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911002.htm

    TANG Li-zhong, SONG Yang-lin. Particle flow simulation of macro- and meso- mechanical properties of uniaxially compressed rock-like specimens with non-coplanar overlapping flaws[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2161-2171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911002.htm

    [15]

    CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010.

    [16]

    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.

    [17]

    YOON J S, ZANG A, STEPHANSSON O. Simulating fracture and friction of aue granite under confined asymmetric compressive test using clumped particle model[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 49: 68-83.

    [18]

    SHI C, LI D J, XU W Y, et al. Failure mechanism and stability analysis of the Zhenggang landslide in Yunnan Province of China using 3D particle flow code simulation[J]. Journal of Mountain Science, 2016, 13(5): 891-905.

  • 期刊类型引用(1)

    1. 崔光久,李祥龙,左庭,孙龙,陈浩. 临近胶结充填体矿房爆破装药结构及振动规律分析. 矿产保护与利用. 2024(04): 18-28 . 百度学术

    其他类型引用(0)

图(13)  /  表(5)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  24
  • PDF下载量:  287
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-11-10
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回