• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

温度对饱和黏性土剪切特性影响的试验研究

费康, 周莹, 付长郓

费康, 周莹, 付长郓. 温度对饱和黏性土剪切特性影响的试验研究[J]. 岩土工程学报, 2020, 42(9): 1679-1686. DOI: 10.11779/CJGE202009012
引用本文: 费康, 周莹, 付长郓. 温度对饱和黏性土剪切特性影响的试验研究[J]. 岩土工程学报, 2020, 42(9): 1679-1686. DOI: 10.11779/CJGE202009012
FEI Kang, ZHOU Ying, FU Chang-yun. Experimental study on effect of temperature on shear behavior of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1679-1686. DOI: 10.11779/CJGE202009012
Citation: FEI Kang, ZHOU Ying, FU Chang-yun. Experimental study on effect of temperature on shear behavior of saturated clays[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1679-1686. DOI: 10.11779/CJGE202009012

温度对饱和黏性土剪切特性影响的试验研究  English Version

基金项目: 

国家自然科学基金项目 51778557

扬州大学研究生科研创新计划项目 XKYCX19_088

详细信息
    作者简介:

    费康(1978—),男,博士,教授,主要从事地基基础等方面的教学和科研工作。E-mail:kfei@yzu.edu.cn

  • 中图分类号: TU432

Experimental study on effect of temperature on shear behavior of saturated clays

  • 摘要: 采用温控三轴仪,考虑不同的温度–应力路径,对两种正常固结的饱和黏性土进行了固结不排水和固结排水剪切试验,研究了温度变化对土体强度、应力应变关系、孔压响应和流动法则等的影响。结果表明,温度效应的强弱与土的类别有关,温度变化对粉质黏土的剪切特性基本没有影响,但对黏土的影响不容忽视。随着温度的增加,黏土的不排水和排水峰值强度有明显的提高,临界摩擦角基本保持不变。不同温度下黏土不排水剪切过程中均产生正的超孔压,排水剪切中土体体积均持续减小,表明高温下偏应力偏应变曲线出现软化的原因与强超固结土的剪胀机理有区别。黏土剪切特性的变化程度与温度–应力路径相关,先升温后固结试样的不排水强度比固结后升温试样的低。温度循环一周后,黏土的不排水强度较室温下有明显提高。
    Abstract: The effect of temperature on shear behavior of saturated clays is investigated by means of the temperature-controlled triaxial tests. Two kinds of normally consolidated saturated clays are tested. The test program involves different heating and consolidation sequences and drained conditions. The influences of the temperature change on the shear strength, the stress-strain relationship, the excess pore water pressure response and the flow rule are analyzed. The experimental results show that the temperature change significantly affects the shear behavior of the clay, while the temperature effect on the shear behavior of the silty clay is negligible. An increase in temperature increases the undrained and drained peak strength, but the critical friction angle does not change. The excess pore water pressures built up during undrained shear of clay specimens at different temperatures are all found to be positive, and the volume changes under drained shear are always contractive. It implies the reason that the stress-strain softening behavior at high temperature is not shear dilatancy, which is usually used to explain the softening behavior of heavily over-consolidated clays. The temperature effect on the shear behavior is also relevant with the temperature-stress path. The undrained shear strength of the specimen subjected to heat after consolidation is smaller than that of the specimen first heated. After a temperature cycle, the undrained shear strength increases markedly.
  • 图  1   黏土不同温度下固结不排水试验结果

    Figure  1.   Results of CU tests on clays at different temperatures

    图  2   屈服面随温度变化示意图

    Figure  2.   Sketch of evolution of yield surface with temperature

    图  3   粉质黏土不同温度下固结不排水试验结果

    Figure  3.   Results of CU tests on silty clays at different temperatures

    图  4   黏土不同温度下固结排水试验结果

    Figure  4.   Results of CD tests on clays at different temperatures

    图  5   粉质黏土不同温度下固结排水试验结果

    Figure  5.   Results of CD tests on silty clays at different temperatures

    图  6   黏土不同温度–应力路径下固结不排水试验结果

    Figure  6.   Results of CU tests on clays under different temperatures-stress paths

    图  7   粉质黏土不同温度–应力路径下固结不排水试验结果

    Figure  7.   Results of CU tests on silty clays under different temperatures-stress paths

    图  8   土体温度体积应变

    Figure  8.   Thermal volumetric strains of soils

    图  9   不同超固结比下黏土的剪切特性

    Figure  9.   Shear behaviors of clays at different OCRs

    表  1   试验土样基本物理性质

    Table  1   Physical properties of test soils

    土体液限/%塑限/%塑限指数颗粒相对密度
    黏土(C)52.528.024.52.67
    粉质黏土(S)41.227.413.82.61
    下载: 导出CSV

    表  2   试验方案

    Table  2   Test plan

    试验编号剪切排水条件温度增量/℃剪切前有效围压/kPa温度–应力历史
    E1-C/S-U-1不排水0100固结后升温
    E1-C/S -U-20200
    E1-C/S-U-30400
    E1-C/S-U-440200
    E1-C/S-U-560200
    E1-C-D-1排水20200
    E1-C/S-D-240200
    E1-C/S-D-360200
    E2-C/S-U-1不排水40200升温后固结
    E2-C-U-260200
    E3-C/S-U-1不排水40200固结后温度循环一周
    下载: 导出CSV
  • [1] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm

    LIU Han-long, KONG gang-qiang, NG C W W. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm

    [2]

    BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81-122. doi: 10.1680/geot.2006.56.2.81

    [3]

    NOBLE C A, DEMIREL T. Effect of Temperature on Strength Behavior of Cohesive Soil[M]. Washington D C: Highway Research Board, Special Report 103, 1969: 204-219.

    [4]

    UCHAIPICHAT A, KHALILI N. Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt[J]. Géotechnique, 2009, 59(4): 339-353. doi: 10.1680/geot.2009.59.4.339

    [5]

    SHERIF M A, BURROUS C M. Temperature Effects on the Unconfined Shear Strength of Saturated, Cohesive Soil[M]. Washington D C: Highway Research Board, Special Report 103, 1969: 267-272.

    [6]

    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.

    [7]

    LADD C C. Physico-Chemical Analysis of the Shear Strength of Saturated Clays[D]. Cambridge: Massachusetts Institute of Technology, 1961.

    [8]

    KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al. Temperature effects on undrained shear characteristics of clay[J]. Soils and Foundations, 1995, 35(1): 147-162. doi: 10.3208/sandf1972.35.147

    [9]

    TANAKA N, GRAHAM J, CRILLY T. Stress-strain behaviour of reconstituted illitic clay at different temperatures[J]. Engineering Geology, 1997, 47(4): 339-350. doi: 10.1016/S0013-7952(96)00113-5

    [10]

    YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035

    [11] 白冰, 赵成刚. 温度对黏性土介质力学特性的影响[J]. 岩土力学, 2003, 24(4): 533-537. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200304012.htm

    BAI Bing, ZHAO Cheng-gang. Temperature effects on mechanical characteristics of clay soils[J]. Rock and Soil Mechanics, 24(4): 533-537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200304012.htm

    [12]

    ZHOU C, FONG K Y, NG C W W. A new bounding surface model for thermal cyclic behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(16): 1656-1666. doi: 10.1002/nag.2688

    [13]

    ABUEL-NAGA H M, BERGADO D T, LIM B F. Effect of temperature on shear strength and yielding behavior of soft Bangkok clay[J]. Soils and Foundations, 2007, 47(3): 423-436. doi: 10.3208/sandf.47.423

    [14]

    GRAHAM J, TANAKA N, CRILLY T, et al. Modified Cam-Clay modelling of temperature effects in clays[J]. Canadian Geotechnical Journal, 2001, 38(3): 608-621. doi: 10.1139/t00-125

    [15]

    GHAHREMANNEJAD B. Thermo-Mechanical Behaviour of Two Reconstituted Clays[D]. Sydney: University of Sydney, 2003.

    [16]

    BAI B, YANG G, LI T, et al. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials[J]. Mechanics of Materials, 2019, 139: 103180. doi: 10.1016/j.mechmat.2019.103180

    [17] 杨光昌, 白冰. 基于颗粒物质热动力学理论的非饱和土热水力耦合模型研究[J]. 岩土工程学报, 2019, 41(9): 1688-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909014.htm

    YANG Guang-chang, BAI Bing. A thermo-hydro- mechanical coupled model for unsaturated soils based on thermodynamic theory of granular matter[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1688-1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909014.htm

    [18]

    XIONG Y, YANG Q, SANG Q, et al. A unified thermal-hardening and thermal-softening constitutive model of soils[J]. Applied Mathematical Modelling, 2019, 74: 73-84. doi: 10.1016/j.apm.2019.04.034

    [19] 马时冬. 拟似超固结黏土的应力-应变-强度特性[J]. 岩土工程学报, 1987, 9(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198701005.htm

    MA Shi-dong. On the stress-strain-strength characteristics of quasi- overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(1): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198701005.htm

    [20] 费康, 戴迪, 付长郓. 热–力耦合作用下黏土体积变形特性试验研究[J]. 岩土工程学报, 2019, 41(9): 1752-1758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909023.htm

    FEI Kang, DAI Di, FU Chang-yun. Experimental study of the volume change behavior of clay subjected to thermo-mechanical loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1752-1758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909023.htm

    [21]

    DI D A, LALOUI L. Response of soil subjected to thermal cyclic loading: experimental and constitutive study[J]. Engineering Geology, 2015, 190: 65-76.

  • 期刊类型引用(11)

    1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 . 百度学术
    2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 . 百度学术
    3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 . 百度学术
    4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 . 必应学术
    5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 . 百度学术
    6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 . 百度学术
    7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 . 百度学术
    8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 . 百度学术
    9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 . 必应学术
    10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 . 百度学术
    11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 . 百度学术

    其他类型引用(8)

图(9)  /  表(2)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  55
  • PDF下载量:  252
  • 被引次数: 19
出版历程
  • 收稿日期:  2019-11-17
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回