Typesetting math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

Na2SO4盐渍原状黄土冻融过程劣化特性试验研究

许健, 张明辉, 李彦锋, 武智鹏

许健, 张明辉, 李彦锋, 武智鹏. Na2SO4盐渍原状黄土冻融过程劣化特性试验研究[J]. 岩土工程学报, 2020, 42(9): 1642-1650. DOI: 10.11779/CJGE202009008
引用本文: 许健, 张明辉, 李彦锋, 武智鹏. Na2SO4盐渍原状黄土冻融过程劣化特性试验研究[J]. 岩土工程学报, 2020, 42(9): 1642-1650. DOI: 10.11779/CJGE202009008
XU Jian, ZHANG Ming-hui, LI Yan-feng, WU Zhi-peng. Experimental study on deterioration behavior of saline undisturbed loess with sodium sulphate under freeze-thaw action[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1642-1650. DOI: 10.11779/CJGE202009008
Citation: XU Jian, ZHANG Ming-hui, LI Yan-feng, WU Zhi-peng. Experimental study on deterioration behavior of saline undisturbed loess with sodium sulphate under freeze-thaw action[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1642-1650. DOI: 10.11779/CJGE202009008

Na2SO4盐渍原状黄土冻融过程劣化特性试验研究  English Version

基金项目: 

国家自然科学基金项目 51878551

国家自然科学基金项目 51478385

冻土工程国家重点实验室开放基金项目 SKLFSE201312

详细信息
    作者简介:

    许健(1980—),男,博士,教授,博士生导师,主要从事特殊土与环境岩土工程方面的研究工作。E-mail:xujian@xauat.edu.cn

  • 中图分类号: TU444

Experimental study on deterioration behavior of saline undisturbed loess with sodium sulphate under freeze-thaw action

  • 摘要: 选取西安Q3原状黄土,人工制备不同Na2SO4含量的盐渍原状黄土试样。通过冻融作用下的三轴剪切及CT扫描试验,研究了Na2SO4盐渍原状黄土冻融过程劣化规律及微细观结构损伤演化机制。结果表明:冻融作用对应力–应变曲线的类型及特征无明显影响,均表现为应变硬化型。破坏偏应力随冻融次数增加逐渐减小,但衰减速率逐渐减小,表现出减速劣化特征;冻融条件下破坏偏应力随着含盐量增加逐渐减小,且表现出线性或加速劣化特征。黏聚力呈现与破坏偏应力相似的劣化特征;内摩擦角变化幅值较小且无明显规律。冻融与盐蚀劣化因子的比值随冻融次数增加逐渐增大但增速逐渐减小,随含盐量增大逐渐减小且衰减速率逐渐减小。CT数ME值呈现与破坏偏应力和黏聚力相似的劣化规律;构建了CT细观损伤变量演化方程,可较好预测试样冻融过程细观结构损伤演化规律。宏细观损伤变量表现出一致的变化规律,表明CT细观结构损伤变量准确揭示了宏观三轴剪切强度指标的劣化机理。
    Abstract: Xi'an Q3 undisturbed loess was chosen to artificially prepare saline undisturbed loess specimens with different gradients of sodium sulphate content. The triaxial shear and CT scanning tests under freeze-thaw action are then conducted to study deterioration behavior and damage mechanism of microstructure of the saline undisturbed loess with sodium sulphate. The results show that the freeze-thaw action has no obvious effect on the type of stress-strain curves, which constantly present characteristics of strain hardening. The failure deviator stress decreases with the increasing number of freeze-thaw cycles while the attenuation rate gradually declines, indicating that freeze-thaw action results in weakening deterioration rate. Moreover, the failure deviator stress experiences a linear or growing decline rate at higher salt content, demonstrating that salt erosion leads to linear or strengthening deterioration rate. The cohesion exhibits the similar characteristics of deterioration with the failure deviator stress. The internal friction angle shows a little variation and no explicit regularity. The ratio of freeze-thaw deterioration factor to that for salt erosion increases with a growing number of freeze-thaw cycles, while its growth rate declines. In addition, the ratio decreases with higher salt content and its attenuation rate also declines. The ME value of CT scanning presents the similar variation with failure deviator stress and cohesion. A formula for microscopic damage variable is then established, and can well predict the damage rules of microstructure of specimens under freeze-thaw action. Both the macroscopic and microscopic damage variables show the consistent variation, indicating that microscopic damage variable well reveals the deterioration mechanism of triaxial shear strength indexes.
  • 随着城市化进程的发展,地铁网逐渐加密[1]。在城市中心修建盾构隧道过程中,经常遇到无法避让桩基的情况[2-4],穿越既有结构物桩基的情况越来越多。传统的方法是将上部构筑物拆除,进行原地拔桩。这种方式虽然相对安全成熟,但是存在着对周围环境影响大、成本高、工期长、严重影响城市交通等不足。常规盾构机基本不具备切削桩基的能力,若能对盾构机改进加强直接破除并穿越桩基,将可为盾构隧道线路规划提供更多的可选性与灵活性,也可避免给繁忙的城市交通带来不利影响。

    盾构直接切削处理障碍桩的优势明显、经济社会效益显著,但磨桩技术无论是理论研究还是技术实践都远未成熟[5]。Wang等[6]提出盾构穿越桥梁的磨桩技术中,涉及到筏板基础的扩展加固和复合地基的改善,但是并没有对磨桩刀盘布置展开具体研究;滕丽[7]采用400 mm盾构模拟平台,研究指出刀盘上应适量增配先行刀和贝壳刀,推进速度应小于10 mm/min,改造后的刀盘可切削C20素混凝土、加削解剂的C30玻璃纤维混凝土,但仍无法切削Φ20 mm钢筋混凝土。常规的盾构刀具并不适合磨桩,磨桩对刀具要求很高,不但要能够有效切削钢筋混凝土,而且也要有足够强度的抗磨损能力;刘浩[8]采用具有较高强度和刚度的滚刀,在磨桩过程中未切削钢筋之前就将钢筋挤压变形,无法直接切断钢筋,导致钢筋缠绕在滚刀上,将滚刀转轴堵死,无法发挥其切削钢筋的能力。在磨桩施工案例上,未见有国外的磨桩施工相关报道,国内也只有切削小直径桩基的个别施工案例[9-10],其中广州地铁三号线泥水平衡盾构采用滚刀切削19根500~800 mm灌注桩,上海地铁七号线土压平衡盾构增配65把先行刀后切削10根350 mm×350 mm立柱桩。并且由于螺旋机叶片和套筒内部存在间隙,切桩产生的钢筋,能否从螺旋输送机顺畅排除,也是巨大的挑战和疑惑。以上的种种挑战和困难,都严重制约着磨桩技术的应用。

    本文基于杭州地铁2号线凤起桥盾构穿越6根Φ1000 mm桥桩工程的需要,拟开展以下工作:磨桩刀盘刀具设计与布置、盾构机系统的改造、推进过程中的施工控制,结合沉降监测结果说明本磨桩技术的合理性,可供今后类似磨桩工程借鉴。

    杭州轨道交通2号线全长43.3 km,均为地下线,共设33座车站,连接余杭、拱墅、西湖、下城、江干、萧山6个区,南段预留临浦轨道,北段预留安吉城际轨道。根据轨道交通2号线的线路规划,建国北路站—中河北路站区间隧道将从凤起路上的凤起桥桩基间穿越。凤起桥位于建国北路与凤起路交叉口西侧100 m左右,距离建国北路站西端头井为60 m。该桥为单跨简支梁结构,两个桥墩,桥面宽20.54~23.62 m。上部结构采用20 m后张法预应力混凝土空心板,梁高为95 cm,下部结构为轻型桥台,Φ1000 mm钻孔灌注桩基础。由于凤起桥位于市中心,周边环境复杂,交通流量大,拆桥重建存在巨大困难,因此对原有桥梁进行改造加固,桥面加宽至36.4 m,成为盾构隧道施工要求的最佳选择。

    盾构穿越凤起桥,覆土6.1 m,需要磨削2排Φ1000 mm的钻孔灌注桩,桩基混凝土标号为C25,Φ22主筋;混凝土按C25考虑。上行线(列车从起点驶向终点的轨迹线)磨Φ1000 mm桩2根;下行线(列车从终点驶向起点的轨迹线)磨Φ1000 mm桩4根。所磨桩位基本与隧道线垂直,现状桥与待建地铁关系见图1

    图  1  隧道穿越桥梁桩基不同角度投影
    Figure  1.  Various views of tunnel crossing bridge foundation

    工程区第四系地层厚度为50 m左右,场地浅表层分布有厚度2.8~5.7 m不等的填土,其下属钱塘江冲海积厚度8.0~15.1 m的粉土和砂层。区间盾构穿越凤起桥隧道断面地层主要有③6粉砂夹砂质粉土、③7砂质粉土和⑥1淤泥质粉质黏土。同时隧道覆土较浅,约为6.1 m。覆土主要由③6粉砂夹砂质粉土、③3砂质粉土夹粉砂、③7砂质粉土以及少量淤填土。场地地基土层分布及特征如表1所示。

    表  1  土层的主要物理力学参数
    Table  1.  Physical and mechanical parameters of soil strata
    序号土层名称重度γ/(kN·m-3)压缩模量Es/MPa黏聚力c/kPa内摩擦角φ/(°)
    2砂质粉土18.97.54.025.5
    3砂质粉土夹粉砂19.110.03.029.0
    6粉砂夹砂质粉土19.111.01.030.0
    7砂质粉土19.47.06.018.0
    2淤泥质粉质黏土18.42.813.010.0
    3黏质粉土18.24.06.018.0
    1淤泥质粉质黏土17.72.514.010.5
    下载: 导出CSV 
    | 显示表格

    为尽量减小对既有桥梁的影响,决定保留原桥桥台,新建U型基础与老桥桥台共同受力。同时为满足承载力及沉降要求,采用高压旋喷桩对桥下土体进行加固。高压旋喷桩采用直径80 cm,桩长15.5 m双重管旋喷桩,旋喷桩主要由两类加固,第一类是强加固区高压旋喷桩布置,四角中心间距80 cm布置;第二类是弱加固区高压旋喷桩加固布置,分别由120 cm×120 cm等边三角形布置和160 cm×160 cm等边三角形布置。强加固区主要布置在桥台两侧,弱加固区120 cm×120 cm主要布置在隧道通过的范围内,弱加固区160 cm×160 cm主要布置在隧道通过的范围外,如图2所示。盾构磨桩前需对凤起桥基础的托换加固,以筏型基础代替原桩基础来承受上部带来的荷载,主要托换盾构穿越范围的桥梁基础,托换宽度为23.6 m。新建筏基长20 m,宽23.6 m,厚1 m,如图3所示

    图  2  高压旋喷桩详图
    Figure  2.  Details of high-pressure jet grouting pile
    图  3  桥梁桩基加固AA立面图
    Figure  3.  Plan view of reinforcement of A-A section of bridge foundation

    根据软土地区及大直径桩基特点进行刀具选型分析,结合Advant Edge FEM有限元软件模拟对贝壳刀的角度进行设计,并且对刀具布置方式进行研究,保证其耐磨性以及能够有效的切削钢筋混凝土桩基,避免在切削过程中刀具磨损严重而影响工程质量。

    根据已有的磨桩施工案例,在贝壳刀或滚刀并配以刮刀的方式进行对比布置。一方面在磨桩之前,盾构要在软土地层中掘进,滚刀转轴容易堵死,难以旋转,从而失去滚刀的功能。另一方面由于滚刀刚度较大,在没有切削钢筋之前就将钢筋挤压变形,无法直接切断钢筋,导致钢筋缠绕在滚刀上,而无法发挥其切削钢筋的能力[11]。采用贝壳刀作为先行刀与刮刀高低配置,则可以较大刚度和较粗壮的贝壳刀切削钢筋混凝土桩,且贝壳刀作为先行刀高度高于刮刀,对刮刀有一定的保护作用[8]。贝壳先行刀在刮刀切之前先破除桩的表层混凝土并切削钢筋,为刮刀创造良好的切削条件。贝壳刀及相应的刀具配置如图4所示。

    图  4  贝壳刀以及相应的刀具配置[8]
    Figure  4.  Shell cutter and its tool configuration[8]

    参照刀刃的掘削方向,图5中,若后角β>0,在掘进方向上,承受刀盘推力和切削桩身的仅为刀尖部分,此种情况下刀具磨损速度将会极快;若前角α>0,则楔角γ<90°为锐角,一方面刀尖切削过程中碰到钢筋和混凝土粗骨料时,易产生应力集中而发生断裂,另一方面参考金属切削加工领域成果[12],正前角刀具切削金属时,前刀面附近存在拉应力场,故较易产生刀刃合金崩损。因此切削钢筋混凝土桩基,刀刃选用负前角和零后角为宜。

    图  5  贝壳刀刀刃不同前后角磨桩示意图
    Figure  5.  Schematic diagram of grinding piles with different front and rear angles of shell knife edges

    贝壳刀的刀刃形状有单面刃或双面刃两种可供选择,如图6所示,两种刀刃的不同点在于:双面刃的刀头较钝,故耐磨性和抗崩裂性优于单面刃;反过来,单面刃由于其较为锋利,其切断钢筋所需的切削面积AS2小于双面刃对应的切筋面积AS1,切筋效率更高。鉴于刀刃的耐磨性和抗崩裂性能直接关系到工程安全,因此选用双面刃的贝壳刀[13]

    图  6  两种刀刃对钢筋的切削效果
    Figure  6.  Cutting effects of two kinds of blades on steel bar

    根据2.1节的分析,盾构切削钢筋混凝土桩基应采用负前角、零后角的刀刃。在金属切削加工领域,为利于连续切除并方便排屑,刀刃基本上采用正前角形式,故该领域成果较难对盾构刀刃切筋提供直接借鉴;另一方面,钢筋截面为圆形,不同于矩形工件,被切削时也有其特殊的受力和变形特征。为研究负前角刀刃对钢筋的切削效果和机理,本文建立切削钢筋模型,采用二维模型进行分析。

    材料模型及参数:刀刃材料为碳化钨硬质合金,采用刚体进行模拟;钢筋采用Johnson-Cook模型,以剪切失效准则作为切削分离准则,钢筋材料参数取值参照与之基本近似的45号钢[14];模型中输入的刀刃与钢筋的参数如表2,3所示。

    表  2  刀刃和钢筋的物理力学参数
    Table  2.  Physical and mechanical parameters of blade and reinforcement
    项目弹性模量E/GPa泊松比μ密度ρ/(g·cm-3)剪切模量G/GPa
    刀刃6500.2315.7264
    钢筋2000.257.8580
    下载: 导出CSV 
    | 显示表格
    表  3  钢筋Johnson-Cook本构模型及失效参数
    Table  3.  Johnson-Cook constitutive model and failure parameters of rebars
    本构模型参数失效参数
    A/MPaB/MPanCmd1d2d3d4
    5073200.280.0641.060.10.761.57-0.84
    下载: 导出CSV 
    | 显示表格

    实际工程中桩基主筋直径一般Φ16~22 mm,故选择Φ22 mm钢筋作为研究对象,刀具角度选用前角10°零后角、前角-30°零后角、前角-45°后角10°,切削深度取3 mm,通过AdvantEdge FEM有限元软件模拟,得到切削钢筋模型典型时刻的应力云图,刀具刀刃部分温度对比图以及切削力对比图,如图711所示。

    图  7  前角10°零后角刀刃切削钢筋应力云图
    Figure  7.  Stress nephogram of blade cutting steel with front angle of 10°and zero back angle
    图  8  前角-30°零后角刀刃切削钢筋应力云图
    Figure  8.  Stress nephogram of blade cutting steel with front angle of -30°and zero back angle
    图  9  前角-45°后角10°刀刃切削钢筋应力云图
    Figure  9.  Stress nephogram of blade cutting steel with front angle of -45°and 10°back angle
    图  10  刀刃温度对比图
    Figure  10.  Comparison of blade temperatures
    图  11  切削力对比图
    Figure  11.  Comparison of cutting forces

    图79所示,可得出以下结论:①变化范围,前角10°零后角刀刃应力变化范围750~1700 MPa;前角-30°零后角刀刃应力变化范围450~1500 MPa;前角-45°后角10°刀刃应力变化范围700~1750 MPa。②变化规律,前角10°零后角和前角-45°后角10°刀刃产生应力集中,刀刃易磨损,不适合切削钢筋。如图10,11所示,刀刃切削过程中,3种方案刀刃温度随着切削长度的增加总体呈先升高后降低的趋势,最大温度分别为626.4℃,525.5℃,593.3℃,其中前角-30°零后角刀刃温度峰值比前角10°零后角刀刃降低16.1%,相比前角-45°后角10°刀刃降低11.4%。3种方案所需的切削力大小随着切削长度的增加总体呈先增大后减小的趋势,最大切削力分别为16335.5,14500.5,16933.3 N,其中前角-30°零后角刀刃切削力峰值比前角10°零后角刀刃减少11.2%,相比前角-45°后角10°刀刃减少14.3%。

    综合比较3种情况,选用前角-30°零后角刀刃应力变化范围小且应力分散,切削过程中,产生的温度和切削力低,对刀具损伤小,最适合切削钢筋。

    在推进力的作用下,排列在刀盘上的贝壳刀紧压桩面,随着刀盘的转动,桩面被碾出一系列同心圆,当超过桩面受力极限时,两个同心圆之间的桩体中间裂缝贯通,桩片被剥落,从而达到磨桩的作用。贝壳刀的刀间距是指相邻刀刃刃口相对刀盘中心距离之差,即在掘进时相邻刀刃形成的轨迹之间的距离。

    盾构机刀盘上相邻两把贝壳刀在刀盘推力作用下切入桩体的深度为h,磨桩宽度为P,相邻两把贝壳刀之间的最合理刀间距是S,如图12所示。

    图  12  贝壳刀磨桩示意图
    Figure  12.  Schematic diagram of shell knife grinding pile

    当刀盘转动一周时,单把贝壳刀的磨桩宽度为

    P=2htanθ, (1)

    要使刀盘全断面磨桩,则相邻两贝壳刀之间不应存在累积混凝土脊,因此需满足

    S<2htanθ (2)

    由式(1)可知,磨桩宽度与刀盘的每转掘进深度h和单把贝壳刀磨桩时桩面开裂的夹角θ有关,增加掘进深度h可使磨桩宽度P加宽,进而减少贝壳刀数量。但是磨桩宽度越宽,贝壳刀刃口的应力越大,磨损增加,同时需要加大盾构刀盘的推力。因此需要在有效磨桩的同时,设置合理的掘进深度,同时减小相邻两贝壳刀之间的距离,增加相邻贝壳刀磨桩重叠量,减小贝壳刀刃口应力,减小磨损。根据已有的工程案例选取两贝壳刀之间的距离为S=0.62P,在合理利用盾构刀盘有效推力的前提下,增加贝壳刀的磨桩量,提高掘进效率。

    刀具磨损和地质条件、刀具材质以及刀具安装位置都有关系[15]。根据刀具磨损等寿命原则[16],为了保证刀盘上刀具磨损量基本一致,需要调整不同半径上磨耗系数,保证不同刀具的寿命基本相等。当配置n把刀具时其磨耗系数为

    Kn=K/n0.333 (3)

    式中 n为每圆周上切刀的数量;K为1条掘削轨迹布置1把刀具时的磨耗系数。

    关于刀盘群刀配置方式,有阿基米德螺旋线布置法[17]和同心圆布置法[8]两种形式。考虑到已有的釆用贝壳刀磨柱的案例中,如切削沈阳地铁1号线启工街—保工街区间的卫工桥,上海地铁7号线北延伸陆翔路站—潘广路站盾构区间穿越公司工业厂房桩基,天津津滨轻轨中山门西段标盾构区间在穿越房屋施工过程等均采用同心圆布置法,故本次设计也采用同心圆布置新型贝壳刀。同心圆布置可以通过同一切削轨迹上的几把刀具共同对所在切削轨迹的岩土体进行切削破除,有利于降低刀具的磨损。相邻贝壳刀切削轨迹间距的确定,应以能全覆盖面切削桩身混凝土,同时满足轴对称的布置原则,使刀盘在理论上不受倾覆力矩的作用,刀具的对称布置需要满足刀盘正反两个方向转动的要求。

    待磨桥梁桩基最大直径为1000 mm,由于原为软土刀盘设计,不具备有效切削钢筋混凝土桩基的能力。因此需要对刀盘刀具进行改进,包括普通先行刀改为切混凝土先行刀、新型齿刀改为重型齿刀、鱼尾式的中心软土刀改为突出式中心刀。本次设计的大贝壳刀高200 mm,高出刮刀120 mm,以充分保护刮刀,采用同心圆等间距的方式布局大贝壳刀,同心圆间距为100 mm,刀盘外圈在每个轨迹上布刀数量多于刀盘内圈,共布置49把大贝壳刀。焊接型切削先行刀高度为170 mm,刀盘中心、中间部位每个轨迹上布置1把刀,外周部位每个轨迹上布置3把刀,共40把。进行三段高差立体刀盘改造,刀具分布如图13所示。

    图  13  刀盘示意图
    Figure  13.  Schematic diagram of cutter head

    通过增加螺旋机叶片、螺旋机套筒内壁的耐磨性能和厚度,减小两者之间的间隙,降低切削下来的钢筋卡在两者之间的风险。增加螺旋机前闸门功能,保证在穿越东河和磨桩过程中螺旋机的密封性能。

    前三节轴及叶片表面全部堆焊耐磨层,其余轴及叶片表面堆焊致密网格耐磨层;前3~5节螺旋叶片周边镶耐磨合金块;前端节内筒壁堆耐磨焊;固定节内筒壁前1500 mm堆耐磨焊,通过增加螺旋机叶片、螺旋机套筒内壁的耐磨性能和厚度,减小两者间隙至5 mm,降低切削下来的钢筋卡在两者之间的风险,如图14所示。

    图  14  改造后的螺旋机
    Figure  14.  Modified screw conveyor

    增加一台小流量低速推进泵推进系统,磨桩时使用低速功能时,将原推进泵停止,只使用低速泵定速推进,保证盾构机切削桩基时能够低速、稳速推进,可避免由于盾构原自带的大流量千斤顶其单次调整流量幅度较粗,速度忽快忽慢而导致对原桥梁桩基及上部结构产生的影响,可达到刀盘切削时应让刀具每次只“啃”一点,即以“磨削”为基本切桩理念。

    盾构在接近桩基3 m处,推进时必须放慢推进速度,推进速度由正常推进3~5 cm/min调整至1 cm/min,为了防止前面土体形成泥饼,适量向刀盘加注润滑剂,所述润滑剂为泡沫剂,可改善土体顺利出土。盾构机刀盘贴近桩基,推进速度进一步放慢,控制在1~2 mm/min,推力控制范围为13000~18000 kN,扭矩控制范围为2500~3500 kN·m,刀盘转速控制在1.2~1.5 rpm。土压稳定保持在一个高位,具体可通过“闷推”来实现:先完全关闭排土闸门,盾构机“闷推”前进,待土压升高到比设定土压高后,自动出土,控制闸门开口率不超过10%,土压降到设定土压后立即关闭闸门,继续“闷推”,如此循环。盾构机磨桩过程中姿态严格控制,采用稳坡法、缓坡法推进,确保磨桩时刀盘和桩体的全面接触;盾构磨桩通过后,采用性惰浆进行同步注浆。表4为盾构推进控制参数。

    表  4  盾构推进控制参数表
    Table  4.  Control parameters of shield driving
    盾构施工内容土压力/MPa刀盘转速/rpm推进速度(磨桩)/(mm·min-1)注浆压力/MPa注浆量/m3出土量/m3推力/MN刀盘扭矩/(MN·m)
    施工参数控制表0.16~0.221.2~1.51~20.3~0.52.8~3.337~3913~182.5~3.5
    下载: 导出CSV 
    | 显示表格

    图15为桥面沉降监测点布置图,QCJ1~QCJ12为桥面沉降监测点,三断面布置,QCJ1~QCJ4为断面1,QCJ5~QCJ8为断面2,QCJ9~QCJ12为断面3,排间距为10 m,每一排的测点间距也是10 m,均匀布置。

    图  15  桥面沉降监测点布置
    Figure  15.  Layout of monitoring points for bridge deck settlement

    图16为桥台沉降监测点布置,QC1~QC8为桥台沉降监测点,二断面布置,QC1~QC4为断面1,QC5~QC8为断面2,间距为18 m,每一侧的测点间距为8 m,8 m,7 m,后期U型结构的施工,U型结构与桥台相连接,桥台监测点移植到U型结构上。

    图  16  桥台沉降监测点布置
    Figure  16.  Layout of monitoring points for abutment settlement

    图17(a)~(c)分别为盾构隧道上、下行线施工过程中桥面沉降变化图,桥面沉降三断面监测点穿越桥梁桩基的总曲线图。盾构隧道先施工上行线后施工下行线,磨桩过程中的环数是从第47环开始,第78环结束。图中沉降量正值为桥面点上升,负值为桥面点下降。

    图  17  盾构推进过程中桥面沉降测量结果
    Figure  17.  Settlement results of deck during shield driving

    图17所示,可得出以下结论:①变化范围,上行线通过,监测数据变化范围为-5.18~3.18 mm,下行线通过,监测数据变化范围-4.50~1.03 mm。②变化规律,上行线施工通过后,桥面出现倾斜现象,最大沉降差6.74 mm。下行线施工过程中虽变化范围比上行线小,但局部点的沉降速率大于上行线。QCJ6,QCJ7为下行线中间断面左右两侧的测点,在盾构穿越阶段,出现较大的沉降,而其余点变化小。盾构离开阶段,盾尾注浆后,QCJ6和QCJ7沉降有明显的上升,最后其余测点几乎相平。盾构推进的3个阶段数据变化有规律性。

    图18(a)~(c)分别为盾构隧道上、下行线施工过程中桥台沉降变化图,桥台沉降二断面监测点穿越桥梁桩基的总曲线图。盾构隧道先施工上行线后施工下行线,磨桩过程中的环数是第47环开始,第78环结束。图中沉降量正值为桥台点上升,负值为桥台点下降。

    图  18  盾构结果推进过程中桥台测量结果
    Figure  18.  Settlement results of abutment during shield driving

    图18所示,可得出以下结论:①变化范围:上行线通过,监测数据变化范围-4.00~4.31 mm,下行线通过,监测数据变化范围-1.68~2.93 mm。②变化规律,上行线施工通过后,桥台多数测点出现逐渐沉降现象。而下行线施工通过后,桥台多数监测点出现先隆起后稍有沉降现象。即在下行线盾构穿越阶段,所有测点上升,在盾构离开阶段略有下降,最后趋于稳定。

    各项实测数据反映,在双线盾构隧道通过前后,桥梁整体变形较小,变形特征合理。因此对磨桩刀具设计与布置具有合理性,将结果应用到刀盘改进,并配合盾构推进过程中的施工控制,盾构磨桩过河区间中桥面平均累计沉降仅-3.09 mm,未对凤起桥及河流产生明显影响,切削钢筋效果较好且只有极少部分钢筋缠绕在刀具上,在整个磨桩过程中是稳定、有效的。

    本文根据软土地区及大直径桩基特点进行刀具选型研究,结合Advant Edge FEM有限元软件模拟对贝壳刀的角度进行设计,并且对刀间距及群刀布置方式进行研究。通过沉降监测结果验证了该技术的合理性,主要得到以下3点结论。

    (1)选用贝壳刀切削钢筋混凝土桩,能够破除桩表层混凝土并切削钢筋,刀刃选用零后角和负前角,形状选择双面刃,能提高耐磨性和抗崩裂性,有效切削钢筋混凝土桩基。

    (2)刀间距选用S=0.62P,结合先行刀与刮刀,采用同心圆三段高差立体刀具布置对盾构刀盘做出相应改进,配合盾构机系统改进和推进过程中施工控制,切削桩基效果最佳。

    (3)监测结果表明,盾构磨桩过河区间中桥面平均累计沉降仅-3.09 mm,未对凤起桥及河流产生明显影响,研究结果成功应用于杭州地铁2号线凤起桥磨桩工程,可为今后类似盾构区间的刀具选型设计和盾构施工提供借鉴。

  • 图  1   试样含水率及含盐量分布

    Figure  1.   Water and salt profiles for standard specimens

    图  2   榆林和延安地区月平均最低气温变化曲线

    Figure  2.   Curves of meteorological data for Yulin and Yan’an

    图  3   冻融作用下试样应力–应变曲线

    Figure  3.   Stress-strain curves under freeze-thaw action

    图  4   试样强度变化规律曲线

    Figure  4.   Variation of strength of specimens

    图  5   黏聚力变化规律曲线

    Figure  5.   Variation of cohesion

    图  6   内摩擦角变化规律曲线

    Figure  6.   Variation of internal friction angle

    图  7   解耦路径示意图

    Figure  7.   Schematic diagram of decoupling path

    图  8   冻融与盐蚀劣化因子比值的变化规律曲线

    Figure  8.   Variation of ratio of freeze-thaw deterioration factor to that by salt erosion

    图  9   不同冻融循环次数下CT图像

    Figure  9.   CT images under different freeze-thaw cycles

    图  10   CT数ME值与冻融循环次数关系

    Figure  10.   Variation of ME with freeze-thaw cycles

    图  11   不同含盐量下CT图像

    Figure  11.   CT images of specimens with different salt contents

    图  12   CT数ME值与含盐量关系

    Figure  12.   Variation of ME with salt content

    图  13   细观损伤变量DME变化规律曲线

    Figure  13.   Variation of mesoscopic damage variable

    图  14   细观损伤变量DME拟合分析

    Figure  14.   Fitting analysis of mesoscopic damage variable

    图  15   宏细观损伤变量变化规律曲线

    Figure  15.   Variation of macroscopic and mesoscopic damage variables

    表  1   试样物理性质指标

    Table  1   Physical properties of undisturbed loess

    土粒相对密度Gs干密度ρd/(g·cm-3)孔隙比e液限wL/%塑限w P/%塑性指数Ip
    2.701.420.9234.319.614.7
    下载: 导出CSV
  • [1] 许健, 郑翔, 王掌权. 黄土边坡盐蚀剥落病害特征调查及其水盐迁移规律研究[J]. 工程地质学报, 2018, 26(3): 741-748. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803021.htm

    XU Jian, ZHENG Xiang, WANG Zhang-quan. Investigation for water and salt migrations on spalling disease of loess slope caused by salification erosion[J]. Journal of Engineering Geology, 2018, 26(3): 741-748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803021.htm

    [2] 高江平. 盐渍土工程与力学性质研究进展[J]. 力学与实践, 2011, 33(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201104002.htm

    GAO Jiang-ping. Research progress in engineering and mechanical properties of the saline soil[J]. Mechanics in Engineering, 2011, 33(4): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201104002.htm

    [3] 李振, 邢义川, 张宏. 盐渍土冻胀性的试验研究[J]. 西北农林科技大学学报(自然科学版), 2005, 33(7): 73-76. doi: 10.3321/j.issn:1671-9387.2005.07.018

    LI Zhen, XING Yi-chuan, ZHANG Hong. Experimental study on frost heaving of saline soil[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2005, 33(7): 73-76. (in Chinese) doi: 10.3321/j.issn:1671-9387.2005.07.018

    [4] 牛玺荣, 高江平. 综合考虑盐胀和冻胀时硫酸盐渍土体积变化关系式的建立[J]. 岩土工程学报, 2015, 37(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504028.htm

    NIU Xi-rong, GAO Jiang-ping. Expression for volume change of sulphate saline soil considering salt expansion and frost heave[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504028.htm

    [5] 黄雪峰, 邱爽, 付正锋, 等. 宁南黄河灌区硫酸盐盐渍土盐胀规律及特性研究[J]. 四川建筑科学研究, 2010, 36(6): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ201006030.htm

    HUANG Xue-feng, QIU Shuang, FU Zheng-feng, et al. Study in the salt expansion and characteristic of sulfate saline soil in Ningnan irrigation area of the Yellow River in Ningxia[J]. Sichuan Building Science, 2010, 36(6): 114-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ201006030.htm

    [6] 张莎莎, 王永威, 杨晓华, 等. 砾类亚硫酸盐渍土盐胀率的简化预测模型[J]. 中国公路学报, 2015, 28(11): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201511002.htm

    ZHANG Sha-sha, WANG Yong-wei, YANG Xiao-hua, et al. Simplified prediction model of salt expansion rate for gravel sulfite saline soil[J]. China Journal of Highway and Transport, 2015, 28(11): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201511002.htm

    [7] 胡再强, 刘寅, 李宏儒. 冻融循环作用对黄土强度影响的试验研究[J]. 水力学报, 2014, 45(增刊2): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2003.htm

    HU Zai-qiang, LIU Yin, LI Hong-ru. Influence of freezing-thawing cycles on strength of loess[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 14-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2003.htm

    [8] 谷琪, 王家鼎, 司东东, 等. 不同含水率下黄土冻融循环对湿陷性影响探讨[J]. 岩土工程学报, 2016, 38(7): 1187-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607004.htm

    GU Qi, WANG Jia-ding, SI Dong-dong, et al. Effect of freeze-thaw cycles on collapsibility of loess under different moisture contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1187-1192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607004.htm

    [9] 陈正汉, 方祥位, 朱元青, 等. 膨胀土和黄土的细观结构及其演化规律研究[J]. 岩土力学, 2009, 30(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901003.htm

    CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, et al. Research on meso-structures and their evolution laws of expansive soil and loess[J]. Rock and Soil Mechanics, 2009, 30(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901003.htm

    [10] 张伟, 陈正汉, 黄雪峰, 等. 硫酸盐渍土的力学和细观特性试验研究[J]. 建筑科学, 2012, 28(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201201014.htm

    ZHANG Wei, CHEN Zheng-han, HUANG Xue-feng, et al. Research on mechanical and microscopical characteristics of sulfate saline soil[J]. Building Science, 2012, 28(1): 49-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201201014.htm

    [11] 叶万军, 李长清, 杨更社, 等. 冻融环境下黄土体结构损伤的尺度效应[J]. 岩土力学, 2018, 39(7): 2336-2343, 2360. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807004.htm

    YE Wan-jun, LI Chang-qing, YANG Geng-she, et al. Scale effects of damage to loess structure under freezing and thawing conditions[J]. Rock and Soil Mechanics, 2018, 39(7): 2336-2343, 2360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807004.htm

    [12]

    XU J, LI Y F, WANG S H, et al. Shear strength and mesoscopic character of undisturbed loess with sodium sulfate after dry-wet cycling[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1523-1541.

    [13] 杨更社, 张全胜. 冻融环境下岩体细观损伤及水热迁移机理分析[M]. 西安: 陕西科学技术出版社, 2006.

    YANG Geng-she, ZHANG Quan-sheng. Analysis for Mechanism of Rock Microscopic Damage and Moisture-Heat Transfer under the Frost and Thaw Condition[M]. Xi'an: Shaanxi Science and Technology Press, 2006. (in Chinese)

    [14]

    PEYTON R L, HAEFFNER B A, ANDENSON S H, et al. Applying X-ray CT to measure macropore diameters in undisturbed soil cores[J]. Geoderma, 1992, 53(3/4): 329-340.

    [15] 杨更社, 谢定义, 张长庆. 岩石损伤CT数分布规律的定量分析[J]. 岩石力学与工程学报, 1998, 17(3): 279-285. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199803009.htm

    YANG Geng-she, XIE Ding-yi, ZHANG Chang-qing. The quantitative analysis of distribution regulation of CT values of rock damage[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(3): 279-285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199803009.htm

  • 期刊类型引用(32)

    1. 高猛,何恩光,周鹏,田淞文. 盾构机切桩对主轴承载荷及寿命的影响. 轴承. 2025(05): 1-7 . 百度学术
    2. 王德福. 盾构滚刀切削桩基相互作用机理及关键参数分析研究——以海珠湾盾构隧道为例. 现代隧道技术. 2024(01): 216-228 . 百度学术
    3. 张锟,徐前卫,孙庆文,薛海儒,来守玺. 地铁盾构下穿高层建筑基础的扰动变形影响与实测研究. 城市轨道交通研究. 2024(04): 129-135 . 百度学术
    4. 乔世范,张睿,王广,王刚,陈道龙,张喆. 砾砂地层盾构切削大直径群桩的刀具研究. 铁道科学与工程学报. 2024(05): 1966-1978 . 百度学术
    5. 丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 . 百度学术
    6. 陈一凡,黄书华,沈翔,盛健,陈湘生,张良. 密集城区超大直径盾构切削群桩对上部建筑物振动影响规律分析. 现代隧道技术. 2024(03): 266-275 . 百度学术
    7. 周广铁,朱利,高文宪,侯邦,朱睿琦,李娇蓉. 盾构滚刀切削钢筋混凝土桩基影响规律研究. 江西建材. 2024(06): 243-245 . 百度学术
    8. 韩强,张旭,成铭,胡军勇,谢开晋. 地铁盾构下穿既有车站直接磨桩技术研究. 工程建设与设计. 2024(17): 186-189 . 百度学术
    9. 白建军,彭凯西,吴奔,梁嘉骏. 盾构直接切削钢筋混凝土桥基引起的变形分析. 现代隧道技术. 2024(S1): 445-453 . 百度学术
    10. 赵立锋,郭伟,胡适韬,程传过. 盾构穿越既有车站结构地下连续墙施工关键技术研究. 现代隧道技术. 2024(S1): 996-1001 . 百度学术
    11. 刘欣然,高伟琪,刘学彦,韩汝存,马纯梁. 盾构直接连续切削大直径桩施工技术研究. 现代隧道技术. 2024(S1): 1002-1010 . 百度学术
    12. 林向阳,高伟琪,刘学彦,赵洪生,郑德文. 盾构直接切削大直径桩施工技术研究. 土木工程学报. 2024(S1): 178-183 . 百度学术
    13. 万宝林. 盾构穿越既有线运营车站围护桩关键施工技术. 建筑机械化. 2023(03): 24-27 . 百度学术
    14. 张昆. 盾构掘进遇既有桥桩截桩桥梁防护应用研究. 工程技术研究. 2023(04): 108-110 . 百度学术
    15. 刘欣玮,杨涛. 地铁隧道下穿既有车站方案研究. 工程技术研究. 2023(04): 208-210 . 百度学术
    16. 李谷阳,王广. 盾构刀具形状对切削桩基影响及刀具选型研究. 广东建材. 2023(05): 112-115 . 百度学术
    17. 姜梅杰,徐涛,刘晓凤. 隧道施工对邻近桩基变形与受力影响数值模拟研究. 黑龙江工业学院学报(综合版). 2023(06): 117-125 . 百度学术
    18. 廖秋林,宋跃均,方建华,杨昊,赵立安,陈子豪. 软流塑地层盾构切削钢筋混凝土桩基工程实践. 都市快轨交通. 2023(05): 100-109 . 百度学术
    19. 贾蓬,孙占阳,赵文,宋立民. 盾构切削桩基研究现状综述. 隧道建设(中英文). 2023(10): 1637-1656 . 百度学术
    20. 邱金亮. 大直径盾构隧道近距离穿越桥梁桩基扰动分析. 黑龙江交通科技. 2023(12): 93-96+101 . 百度学术
    21. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 . 百度学术
    22. 朱敏,徐琛,汪子豪. 富水砂层既有运营车站地下障碍物的冻结法清障方案力学分析及工程应用. 隧道建设(中英文). 2023(S2): 395-405 . 百度学术
    23. 徐敬民,章定文,刘松玉. 地表框架结构作用下隧道施工诱发的砂质地层变形. 岩土工程学报. 2022(04): 602-612 . 本站查看
    24. 王军. 大直径泥水盾构始发段掘进对近接既有地铁桥梁的影响分析. 中国安全生产科学技术. 2022(04): 176-184 . 百度学术
    25. 高洪梅,蔡鑫涛,张正,李兆,王志华. 盾构下穿桥梁桩基的截桩效应. 地下空间与工程学报. 2022(06): 2044-2051 . 百度学术
    26. 张天宝,王雪颖. 基于AHP-熵权法的跨燃气管道现浇梁施工风险评价. 工业安全与环保. 2021(02): 65-69 . 百度学术
    27. 金平,夏童飞,刘晓阳. 复合地层盾构磨除地下连续墙关键技术研究. 四川建筑. 2021(01): 224-228 . 百度学术
    28. 奚晓广,吴淑伟,王哲,孙九春,许四法,王瑞. 砂砾地层盾构施工土体变形规律三维数值分析. 地基处理. 2021(01): 29-33 . 百度学术
    29. 赵勇,周学彬,彭祖民,喻伟,李宏波. 盾构下穿高强预应力管桩基施工技术. 建筑机械化. 2020(08): 51-54 . 百度学术
    30. 庄欠伟,袁一翔,徐天明,张弛. 射流联合盾构切削钢筋混凝土仿真与试验. 岩土工程学报. 2020(10): 1817-1824 . 本站查看
    31. 李发勇. 可拆解盾构下穿既有桥桩磨桩施工影响研究——以宁波轨道交通4号线柳宁盾构区间为例. 隧道建设(中英文). 2020(10): 1506-1515 . 百度学术
    32. 周国强,杨高伟,奚灵智. 软土地区地铁盾构区间的桥梁稳定性研究. 工程技术研究. 2020(24): 34-36 . 百度学术

    其他类型引用(10)

图(15)  /  表(1)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  19
  • PDF下载量:  172
  • 被引次数: 42
出版历程
  • 收稿日期:  2019-09-02
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-08-31

目录

/

返回文章
返回