• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于不排水强度的黏土基坑抗隆起稳定计算方法

黄茂松, 李弈杉, 唐震, 袁聚云

黄茂松, 李弈杉, 唐震, 袁聚云. 基于不排水强度的黏土基坑抗隆起稳定计算方法[J]. 岩土工程学报, 2020, 42(9): 1577-1585. DOI: 10.11779/CJGE202009001
引用本文: 黄茂松, 李弈杉, 唐震, 袁聚云. 基于不排水强度的黏土基坑抗隆起稳定计算方法[J]. 岩土工程学报, 2020, 42(9): 1577-1585. DOI: 10.11779/CJGE202009001
HUANG Mao-song, LI Yi-shan, TANG Zhen, YUAN Ju-yun. Analysis method for basal stability of braced excavations in clay based on undrained shear strength[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1577-1585. DOI: 10.11779/CJGE202009001
Citation: HUANG Mao-song, LI Yi-shan, TANG Zhen, YUAN Ju-yun. Analysis method for basal stability of braced excavations in clay based on undrained shear strength[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1577-1585. DOI: 10.11779/CJGE202009001

基于不排水强度的黏土基坑抗隆起稳定计算方法  English Version

基金项目: 

国家自然科学基金重点项目 51738010

国家重点研发计划项目 2016YFC0800202

详细信息
    作者简介:

    黄茂松(1965—),男,浙江玉环人,博士,教授,博士生导师,从事岩土工程方面的教学与科研工作。E-mail:mshuang@.tongji.edu.cn

  • 中图分类号: TU473

Analysis method for basal stability of braced excavations in clay based on undrained shear strength

  • 摘要: 目前的基坑抗隆起稳定计算方法多是直接采用固结不排水强度指标进行计算,这种方法对于软黏土地层的计算在理论上是不合理的,且传统的圆弧滑动法未考虑最下道支撑以上土体强度的发挥。针对上述问题,通过将固结不排水强度指标转换成不排水抗剪强度,考虑最下道支撑以上土体强度的发挥,对传统圆弧滑动法进行了改进,并进一步提出了基于不排水强度的圆弧机构上限分析方法。工程算例分析表明,传统圆弧滑动法得到的安全系数普遍偏高,而所提出上限分析方法计算得到的结果则更为合理。
    Abstract: At present, the analysis method for basal stability is mostly based on the consolidated undrained shear strength index. The method is unreasonable in theory for the soft clay and does not consider the strength of the soil above the lowest support. To solve the above problems, the traditional analysis method for basal stability is improved. The consolidated undrained shear strength index is converted into undrained shear strength, and the strength of the soil above the lowest support is considered. Furthermore, the circular arc mechanism of the upper bound limit analysis based on the undrained shear strength is proposed. Through the calculations of engineering cases, the factors of safety obtained by the traditional circular sliding method is generally high, while the results obtained by the proposed upper-bound solution are more reasonable.
  • 图  1   圆弧滑动法计算图示

    Figure  1.   Sketch of arc sliding method

    图  2   破坏和固结Mohr圆[18]

    Figure  2.   Mohr circles at consolidation and failure states[18]

    图  3   挡墙插入比D/H对安全系数的影响(Mp=0)

    Figure  3.   Influences of embedded depth of retaining wall on factor of safety(Mp=0)

    图  4   破坏机构及速度场

    Figure  4.   Failure mechanism and velocity fields

    图  5   挡墙极限弯矩对安全系数的影响

    Figure  5.   Influences of limit bending moment of retaining wall on factor of safety

    图  6   挡墙插入比D/H对安全系数的影响

    Figure  6.   Influences of embedded depth of retaining wall on factor of safety

    图  7   破坏机构及速度场(Mp=∞)

    Figure  7.   Failure mechanism and velocity fields

    图  8   圆弧滑动法计算图示(Mp=∞)

    Figure  8.   Sketch of arc sliding method

    图  9   挡墙插入比D/H对安全系数的影响(Mp=∞)

    Figure  9.   Influences of embedded depth of retaining wall on factor of safety(Mp=∞)

    图  10   算例1主楼基坑剖面图

    Figure  10.   Main building section of excavation Case 1

    图  11   算例1裙楼基坑剖面图

    Figure  11.   Annex building section of excavation Case 1

    图  12   算例2基坑剖面图

    Figure  12.   Section of excavation Case 2

    图  13   湘湖地铁站北2基坑剖面图及土层分布

    Figure  13.   Subsurface soil layers (from site reinvestigation) and a typical cross section of N2 excavation

    图  14   湘湖地铁站北2基坑不排水强度分布

    Figure  14.   Undrained shear strengths at a typical cross section of N2 excavation

    表  1   算例1基坑土层计算参数

    Table  1   Soil parameters of excavation Case 1

    土层层厚/m重度/(kN·m-3)ϕcu/(°)ccu/kPa
    1-10.8418.020.00
    1-20.5018.620.00
    2-11.8018.533.04
    2-28.5018.533.04
    43.7017.011.512
    5-1a6.3017.512.515
    5-1b6.2017.916.519
    下载: 导出CSV

    表  2   算例2基坑土层计算参数

    Table  2   Soil parameters of excavation Case 2

    土层层厚/m重度/(kN·m-3)ϕcu/(°)ccu/kPa
    1-12.1318.020.00
    2-34.9518.532.55
    410.3316.911.09
    5-15.1117.715.512
    下载: 导出CSV

    表  3   算例3基坑土层计算参数

    Table  3   Soil parameters of excavation Case 3

    土层层厚/m重度/(kN·m-3)ϕcu/(°)ccu/kPa
    2-25.719.022.37.1
    4-213.517.118.819.6
    6-117.017.216.720.3
    下载: 导出CSV

    表  4   基坑抗隆起稳定验算结果

    Table  4   Calculated results of basal stability analysis

    验算方法圆弧滑动法圆弧机构(cu)分层地基
    ccu,ϕcu)分层地基(cu)分层地基
    是否考虑最下道支撑以上土体强度
    算例1主楼1.88(2.44)2.02(2.57)1.521.831.45
    算例1裙楼1.76(2.33)1.82(2.39)1.541.671.51
    算例21.50(2.13)1.51(2.15)1.411.431.22
    算例32.03(2.23)2.20(2.39)1.601.17*1.801.29*1.340.98*
    注:(ccu,ϕcu)分层地基:括号内为加权等效均质地基条件下所得安全系数;(cu)分层地基:扣除了开挖土体自重影响所得安全系数,*号表示采用现场实测不排水强度所得安全系数(未扣除开挖土体自重影响)。
    下载: 导出CSV
  • [1] 郑刚, 程雪松. 考虑弧长和法向应力修正的基坑抗隆起稳定计算方法[J]. 岩土工程学报, 2012, 34(5): 781-789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205003.htm

    ZHENG Gang, CHENG Xue-song. Basal stability analysis method considering arc length and normal stress correction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 781-789. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201205003.htm

    [2] 黄茂松, 宋晓宇, 秦会来. K0固结黏土基坑抗隆起稳定性上限分析[J]. 岩土工程学报, 2008, 30(2): 250-255. doi: 10.3321/j.issn:1000-4548.2008.02.016

    HUANG Mao-song, SONG Xiao-yu, QIN Hui-lai. Basal stability of braced excavations in K0-consolidated soft clay by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 250-255. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.02.016

    [3] 黄茂松, 余生兵, 秦会来. 基于上限法的K0固结黏土基坑抗隆起稳定分析[J]. 土木工程学报, 2011, 44(3): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201103017.htm

    HUANG Mao-song, YU Sheng-bing, QIN Hui-lai. Upper bound method for basal stability analysis of braced excavations in K0-consolidated clays[J]. China Civil Engineering Journal, 2011, 44(3): 101-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201103017.htm

    [4]

    CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Scientific, 1975.

    [5]

    CHANG M F. Basal stability analysis of braced cuts in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(3): 276-279. doi: 10.1061/(ASCE)1090-0241(2000)126:3(276)

    [6]

    HUANG M S, TANG Z, YUAN J Y. Basal stability analysis of braced excavations with embedded walls in undrained clay using the upper bound theorem[J]. Tunnelling and Underground Space Technology, 2018, 79: 231-241. doi: 10.1016/j.tust.2018.05.014

    [7]

    TERZAGHI K, PECK R B. Soil Mechanics in Engineering Practice[M]. New York: Wiley, 1948.

    [8]

    BJERRUM L, EIDE O. Stability of strutted excavations in clay[J]. Géotechnique, 1956, 6: 32-47.

    [9] 建筑基坑支护技术规程:JGJ 120—2012[S]. 2012.

    Technical Specification for Retaining and Protection of Building Foundation Excavations: JGJ 120—2012[S]. 2002. (in Chinese)

    [10] 建筑基坑工程技术规范:YB 9258—97[S]. 1998.

    Code for Technique of Building Foundation Pit Engineering: YB 9258—97[S]. 1998. (in Chinese)

    [11] 基坑工程技术标准(上海): DG/TJ08—61—2018[S]. 2018.

    Technical Code for Excavation Engineering: DG/TJ08—61—2018[S]. 2018. (in Chinese)

    [12]

    HSIEN P G, OU C Y, LIU H T. Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay[J]. Can Geotech J, 2008, 45: 788-799.

    [13] 王洪新. 基坑的尺寸效应及考虑开挖宽度的抗隆起稳定安全系数计算方法[J]. 岩土力学, 2016, 37(增刊2): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2057.htm

    WANG Hong-xin. Size effect of foundation pits and calculation method of safety factor of heave-resistant stability considering excavation width[J]. Rock and Soil Mechanics, 2016, 37(S2): 433-441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2057.htm

    [14] 应宏伟, 王小刚, 张金红. 考虑基坑宽度影响的基坑抗隆起稳定分析[J]. 工程力学, 2018, 35(5): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201805015.htm

    YING Hong-wei, WANG Xiao-gang, ZHANG Jin-hong. Limit equilibrium analysis on stability against basal heave of excavation in anisotropy soft clay[J]. Engineering Mechanics, 2018, 35(5): 118-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201805015.htm

    [15] 周建, 蔡露, 罗凌晖, 等. 各向异性软土基坑抗隆起稳定极限平衡分析[J]. 岩土力学, 2019, 40(12): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912034.htm

    ZHOU Jian, CAI Lu, LUO Ling-hui, et al. Limit equilibrium analysis on stability against basal heave of excavation in anisotropic soft clay[J]. Rock and Soil Mechanics, 2019, 40(12): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912034.htm

    [16]

    CHEN R P, LI Z C, CHEN Y M, et al. Failure investigation at a collapsed deep excavation in very sensitive organic soft clay[J]. Journal of Performance of Constructed Facilities, 2015, 29(3): 04014078.

    [17]

    TUAN D, OU C Y, CHEN R P. A study of failure mechanisms of deep excavations in soft clay using the finite element method[J]. Computers and Geotechnics, 2016, 73: 153-163.

    [18] 沈珠江. 基于有效固结应力理论的黏土土压力公式[J]. 岩土工程学报, 2000, 22(3): 353-356. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200003018.htm

    SHEN Zhu-jiang. Soil pressure formula of clay based on effective consolidation stress theory[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 353-356. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200003018.htm

    [19]

    O'ROURKE T D. Base Stability and Ground Movement Prediction for Excavations in Soft Clay[M]//Retaining Structures. London: Thomas Telford, 1993: 131-139.

    [20] 张旷成, 李继民. 杭州地铁湘湖站“08.11.15”基坑坍塌事故分析[J]. 岩土工程学报, 2010, 32(增刊1): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1068.htm

    ZHANG Kuang-cheng, LI Ji-min. Accident analysis for“08.11.15”foundation pit collapse of Xianghu Station of Hangzhou metro[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 338-342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1068.htm

  • 期刊类型引用(0)

    其他类型引用(1)

图(14)  /  表(4)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  48
  • PDF下载量:  363
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-12-25
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-08-31

目录

    /

    返回文章
    返回