Empirical formula for permeability coefficient of coarse grained soil based on gradation equation and its verification
-
摘要: 粗粒土广泛应用于土石坝工程和道路工程,其渗流特性关系到工程的稳定性和安全性,渗透系数是衡量其渗流特性的基本参数,其中级配是影响渗流的关键影响因素。为研究级配对粗粒土渗透系数的影响,基于已有研究的渗透试验成果,采用连续级配方程对级配连粗粒土试验级配进行定量描述,研究级配与渗透系数的关系,建立了考虑级配曲线面积的渗透系数经验公式,并用现有其它文献的渗透试验成果验证所建立公式的适用性。结果表明,采用连续级配方程可以较好地定量描述级配连续粗粒土的级配曲线;基于级配面积建立的渗透系数经验公式适用于不同最大粒径及不同级配的粗粒土。Abstract: The coarse-grained soil is widely used in earth-rock dams and road projects. Its seepage characteristics are related to the stability and safety of the projects. The permeability coefficient is the basic parameter of seepage characteristics, and the gradation is the key factor affecting seepage. In order to study the effect of gradation on the permeability coefficient of the coarse-grained soil, based on the results of permeability tests in the existing literatures, a continuous gradation equation is used to describe the gradation of quantitatively graded coarse-grained soil, the relationship between the gradation and the permeability coefficient is studied, and an empirical formula for the permeability coefficient considering the area of gradation curve is established, and other literatures are used to study the relationship between the gradation and the permeability coefficient. The results show that the gradation curve of graded continuous coarse-grained soil can be quantitatively described by the continuous gradation equation, and the empirical formula for the permeability coefficient based on gradation area can be applied to the coarse-grained soil with different maximum particle sizes and gradations.
-
-
图 3 文献[2]渗透系数的实测值和预测值与级配面积间关系
Figure 3. Measured and predicted values of permeability coefficient with area of gradation curve in Literature 2
图 4 文献[3]渗透系数的实测值和预测值与级配面积间关系
Figure 4. Measured and predicted values of permeability coefficient with area of gradation curve in Literature 3
图 5 文献[5]渗透系数的实测值和预测值与级配面积间关系
Figure 5. Measured and predicted values of permeability coefficient with area of gradation curve in Literature 5
图 6 文献[9]渗透系数的实测值和预测值与级配面积间关系
Figure 6. Measured and predicted values of permeability coefficient with area of gradation curve in Literature 9
表 1 土石混合体天然状态的基本物理指标
Table 1 Basic physical parameters of soil-rock mixture
天然密度/(g·cm-3) 天然含水率/% 相对密度Gs 孔隙比e 最大干密度/(g·cm-3) 最优含水率/% 1.64 28 2.778 1.17 1.733 18 表 2 级配参数及试验实测渗透系数
Table 2 Gradation parameters and test permeability coefficients
砾石含量/% 级配参数 渗透系数k/(cm·s-1) m b 10 1.296 0.958 0.0014 20 1.136 0.915 0.0032 30 1.020 0.850 0.0081 40 0.880 0.715 0.0194 50 0.828 0.546 0.0494 60 0.841 0.403 0.1114 70 0.780 0.001 0.2844 80 1.370 0.520 0.6966 90 3.152 0.895 1.6028 100 7.225 0.993 3.5377 表 3 不同砾石含量级配曲线面积与渗透系数拟合值
Table 3 Areas of gradation curve with different gravel contents and fitting values of permeability coefficients
砾石含量/% 级配曲线面积S 渗透系数拟合值/(cm·s-1) 10 1.074 0.0116 20 0.990 0.0175 30 0.906 0.056 40 0.815 0.0427 50 0.705 0.0788 60 0.608 0.1411 70 0.501 0.2944 80 0.415 0.6113 90 0.333 1.6398 100 0.294 3.5321 表 4 文献[3,5,9]级配参数及级配曲线面积与渗透系数实测值和拟合值及误差分析
Table 4 Gradation parameters and areas gradation curve of Literature 3, 5 and 9 and test and fitting values of permeability coefficients with error analysis
文献 试验编号 dmax/mm 级配参数 面积S 渗透系数k/(cm·s-1) 误差/% m b 实测值 拟合值 [3] 3-1# 20 1.280 0.860 0.740 0.5122 0.5123 0.02 3-2#-1 0.880 0.760 0.875 0.0804 0.0792 1.49 3-3#-1 0.730 0.740 1.021 0.0055 0.0106 92.73 3-4# 0.690 0.790 1.178 0.0046 0.0012 73.91 [5] 1 40 0.173 -10.283 0.419 0.331 0.347 4.83 2 0.890 0.57 0.518 0.56 0.247 75.3 3 1.677 0.9072 0.651 0.192 0.156 11.91 8 1.234 0.834 0.791 0.047 0.097 106.4 [9] TYU1 60 0.387 -1.06 0.658 0.067 0.067 0 TYU2 0.476 -0.33 0.697 0.045 0.042 6.67 TYU3 0.582 0.18 0.747 0.028 0.031 10.71 TYU4 0.668 0.451 0.798 0.024 0.025 4.17 TYU5 0.858 0.735 0.862 0.023 0.022 4.35 TYU7 1.175 0.928 1.010 0.019 0.019 0 注: 误差=|预测值-试验值|/试验值×100%。 -
[1] 毛昶熙. 渗流计算分析与控制[M]. 北京: 水利电力出版社, 1990. MAO Chang-xi. Seepage Computation Analysis & Control[M]. Beijing: China Water Power Press, 1990. (in Chinese)
[2] 周中, 傅鹤林, 刘宝琛, 等. 土石混合体渗透性能的试验研究[J]. 湖南大学学报(自然科学版), 2006, 33(6): 25-28. doi: 10.3321/j.issn:1000-2472.2006.06.006 ZHOU Zhong, FU He-lin, LIU Bao-chen, et al. Experimental study of the permeability of soil-rock-mixture[J]. Journal of Hunan University (Natural Sciences), 2006, 33(6): 25-28. (in Chinese) doi: 10.3321/j.issn:1000-2472.2006.06.006
[3] 刘黎. 粗粒料渗透特性及渗透规律试验研究[D]. 成都: 四川大学, 2006. LIU Li. Testing Study on Seepage Property and Seepage Law of the Coarse Grain[D]. Chengdu: Sichuan University, 2006. (in Chinese)
[4] 王俊杰, 卢孝志, 邱珍锋, 等. 粗粒土渗透系数影响因素试验研究[J]. 水利水运工程学报, 2013(6): 16-20. doi: 10.3969/j.issn.1009-640X.2013.06.003 WANG Jun-jie, LU Xiao-zhi, QIU Zhen-feng, et al. Experimental studies on influence factors of permeability coefficients of coarse-grained soil[J]. Hydro-science and Engineering, 2013(6): 16-20. (in Chinese) doi: 10.3969/j.issn.1009-640X.2013.06.003
[5] 唐晓松, 郑颖人, 董诚. 应用神经网络预估粗颗粒土的渗透系数[J]. 岩土力学, 2007, 28(增刊1): 133-143. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1028.htm TANG Xiao-song, ZHENG Ying-ren, DONG Cheng. The prediction of seepage coefficient of coarse-grained soil by neurotic network[J]. Rock and Soil Mechanics, 2007, 28(S1): 133-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1028.htm
[6] 邱珍锋, 卢孝志, 伍应华. 考虑颗粒形状的粗粒土渗透特性试验研究[J]. 南水北调与水利科技, 2014, 12(4): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201404022.htm QIU Zhen-feng, LU Xiao-zhi, WU Ying-hua. Experimental research on the permeability property of coarse grained soils considering the particle shape[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(4): 102-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201404022.htm
[7] 黄达, 曾彬, 王庆乐. 粗粒土孔隙比及级配参数与渗透系数概率的相关性研究[J]. 水利学报, 2015, 46(8): 900-907. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm HUANG Da, ZENG Bing, GU Dong-ming. Estimation of critical hydraulic gradient of coarse-grained soils based on Copula theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 900-907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201508003.htm
[8] 彭家奕. 颗粒形状对粗粒土渗透特性影响的研究[D]. 武汉: 长江科学院, 2017. PENG Jia-yi. Study on the Effect of Particle Shape on the Permeability of Coarse-Grained Soil[D]. Wuhan: Changjiang River Scientific Research Institute, 2017. (in Chinese)
[9] 朱崇辉, 刘俊民, 王增红. 粗粒土的颗粒级配对渗透系数的影响规律研究[J]. 人民黄河, 2005, 27(12): 79-81. doi: 10.3969/j.issn.1000-1379.2005.12.036 ZHU Chong-hui, LIU Jun-min, WANG Zeng-hong. Influence of particle size distribution of coarse grained soils on permeability coefficient[J]. Yellow River, 2005, 27(12): 79-81. (in Chinese) doi: 10.3969/j.issn.1000-1379.2005.12.036
[10] 邱贤德, 阎宗岭, 刘立, 等. 堆石体粒径特征对其渗透性的影响[J]. 岩土力学, 2004, 25(6): 102-105. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200406029.htm QIU Xian-de, YAN Zong-ling, LIU Li, et al. Effect of particle-size characteristics on seepage property of rockfill[J]. Rock and Soil Mechanics, 2004, 25(6): 102-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200406029.htm
[11] 杨兵, 刘一飞, 万奋涛, 等. 级配特性对砂土渗透系数影响试验研究[J]. 西南交通大学学报, 2016, 51(5): 855-861. doi: 10.3969/j.issn.0258-2724.2016.05.006 YANG Bing, LIU Yi-fei, WAN Fen-tao, et al. Experimental study on influence of particle-size distribution on permeability coefficient of sand[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 855-861. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.05.006
[12] 任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491-497. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802011.htm REN Yu-bin, WANG Yin, YANG Qing. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(2): 491-497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802011.htm
[13] 刘一飞, 郑东生, 杨兵, 等. 粒径及级配特性对土体渗透系数影响的细观模拟[J]. 岩土力学, 2019, 40(1): 403-412. LIU Yi-fei, JENG Dong-sheng, YANG Bing, et al. Study on influence of particle size and gradation on permeability coefficient of soil by meso-scale simulation[J]. Rock and Soil Mechanics, 2019, 40(1): 403-412. (in Chinese)
[14] 王双, 李小春, 王少泉, 等. 碎石土级配特征对渗透系数的影响研究[J]. 岩石力学与工程学报, 2015, 34(2): 4394-4402. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2092.htm WANG Shuang, LI Xiao-chun, WANG Shao-quan, et al. Study on gravel-soil gradation characteristics influence on the permeability coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 4394-4402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2092.htm
[15] 饶云康, 丁瑜, 倪强, 等. 基于GA-BP神经网络的粗粒土渗透系数预测[J]. 水利水运工程学报, 2018(6): 92-97. RAO Yun-kang, DING Yu, NI Qiang, et al. Prediction of permeability coefficients of coarse-grained soil based on GA-BP neural network[J]. Hydro-science and Engineering, 2018(6): 92-97. (in Chinese)
[16] 刘杰. 土的渗透稳定与渗流控制[M]. 北京: 水利电力出版社, 1992. LIU Jie. Permeating Stability of Soil and Permeating Control[M]. Beijing: Chinese Water Conservancy and Electric Power Press, 1992. (in Chinese)
[17] LUBOCHKOV E A. Graphical and analytical methods for the determination of internal stability of filters consisting of non cohesive soil[J]. Izvestia, Vniig, 1965, 78: 255-280. (in Russia)
[18] KENNEY T C, LAU D. Internal stability of granular filters[J]. Canadian Geotehnical Journal, 1985, 22(2): 215-225.
[19] SKEMPTON A W, BROGAN J M. Experiments on piping in sandy gravels[J]. Géotechnique, 1994, 44(3): 49-460.
[20] ABERG B. Void ratio of non-cohesive soil and similar materials[J]. Journal Geotechnical Engineering, ASCE, 1992, 118(9): 1315-1334.
[21] CHANG D S, ZHANG L M. Extended internal stability criteria for soils under seepage[J]. Soils and Foundations, 2013, 53(4): 569-583.
[22] WAN C F, FELL R. Assessing the potential of internal instability and suffusion in embankment dams and their foundations[J]. Journal of Geotechnical and Geo- environmental Engineering, 2008, 134(3): 401-407.
[23] BENAMAR A, CORREIA dos SANTOS R N, BENNABI A, et al. Suffusion evaluation of coarse-graded soils from Rhine dikes[J]. Acta Geotechnica, 2019, 14(3): 815-823.
[24] CHAPUIS R P, SAUCIER A. Assessing internal erosion with the modal decomposition method for grain size distribution curves[J]. Acta Geotechnica, 2020, 15(6): 1595-1605.
[25] TALBOT A N, RICHART F E. The strength of concrete: its relation to the cement aggregates and water[J]. Bulletin, 1923, 137: 1-116.
[26] FULLER W B, THOMPSON S E. The laws of proportioning concrete[J]. Transactions of the American Society of Civil Engineers, 1907, 33: 222-98.
[27] 朱俊高, 郭万里, 王元龙, 等. 连续级配土的级配方程及其适用性研究[J]. 岩土工程学报, 2015, 37(10): 1931-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510029.htm ZHU Jun-gao, GUO Wan-li, WANG Yuan-long, et al. The research on equation of soil gradation curve and its applicability[J]. Chinese Journal of Geotechnical, 2015, 37(10): 1931-1936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201510029.htm
[28] 郭万里. 粗粒土颗粒破碎演化规律及本构模型研究[D]. 南京: 河海大学, 2018. GUO Wan-li. Study on the Particle Breakage Evolution and Constitutive Model of Coarse-Grained Soils[D]. Nanjing: Hohai University, 2018. (in Chinese)