Fractional permeability model for deep coal considering creep effect
-
摘要: 为了考虑深部煤体的蠕变效应对煤体渗透率的影响,结合考虑体积蠕变的深部煤体非线性蠕变三维本构方程、Kozeny-Carman方程、含裂隙煤体渗透率计算方程建立了基于蠕变影响的深部煤体分数阶渗透率模型。利用含瓦斯煤蠕变–渗流试验数据对渗透率模型进行参数拟合,确定了模型的物性参数,并对不同试验条件下的渗透率演化过程进行了模拟分析。结果表明:在弹性及黏弹性蠕变阶段,渗透率模型数值逐渐减小,符合煤体在低应力阶段蠕变过程中初始孔隙被逐渐压密渗透率减小的物理过程;在黏塑性蠕变阶段,渗透率模型能够表征加速蠕变阶段即渗透率突增阶段的演化趋势。此外,对分数阶渗透率模型中的关键参数进行了敏感性分析,发现随着煤体性质参数α0数值的升高,加速蠕变阶段即渗透率突增阶段越容易出现。分数阶导数阶次越高,弹性及黏弹性蠕变阶段渗透率下降速率越快,黏塑性蠕变阶段渗透率突增趋势越缓慢。Abstract: In order to consider the effect of creep of deep coal on the permeability, the three-dimensional constitutive equation for nonlinear creep of deep coal considering volumetric creep, the Kozeny-Carman equation and the equation for permeability of fractured coal are combined to establish a fractional permeability model based on the creep effect. The creep-seepage experimental data of gas-containing coal is used to fit the permeability model and determine the physical parameters, and the permeability evolution is simulated under different experimental conditions. The results show that the permeability model decreases gradually in the elastic and viscoelastic creep stages, which is consistent with the physical process that the initial pores are gradually reduced during the creep process of deep coal in the low stress stage. In the viscoplastic creep stage, the permeability model can characterize the evolution of the accelerated creep stage, that is, the rapid increase stage of permeability. In addition, the sensitivity analysis of the key parameters in the fractional permeability model is carried out. It is found that with the increase of the parameter α0 of deep coal, the rapid increase stage of the permeability is more likely to occur. The higher the fractional derivative order, the faster the rate of permeability decline in the elastic and viscoelastic creep stages, and the slower the tendency of permeability increase in the viscoplastic creep stage.
-
Keywords:
- deep coal /
- volumetric creep /
- fractional derivative /
- permeability model
-
-
[1] 谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报, 2014, 39(8): 1391-1397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408003.htm XIE He-ping, ZHOU Hong-wei, XUE Dong-jie, et al. Theory, technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society, 2014, 39(8): 1391-1397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408003.htm
[2] 谢和平, 周宏伟, 薛东杰, 等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报, 2012, 37(4): 535-542. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204002.htm XIE He-ping, ZHOU Hong-wei, XUE Dong-jie, et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society, 2012, 37(4): 535-542. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204002.htm
[3] 谢和平. “深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术, 2017, 49(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201702001.htm XIE He-ping. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences, 2017, 49(2): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201702001.htm
[4] PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: a new model[J]. Spe Reservoir Evaluation & Engineering, 1998, 1(6): 539-544.
[5] SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1-16.
[6] CUI X J, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181-1202. doi: 10.1306/05110504114
[7] 荣腾龙, 周宏伟, 王路军, 等. 三向应力条件下煤体渗透率演化模型研究[J]. 煤炭学报, 2018, 43(7): 1930-1937. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807016.htm RONG Teng-long, ZHOU Hong-wei, WANG Lu-jun, et al. Coal permeability model for gas movement under the three-dimensional stress[J]. Journal of China Coal Society, 2018, 43(7): 1930-1937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807016.htm
[8] 周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学:物理学力学天文学, 2012, 42(3): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm ZHOU Hong-wei, WANG Chun-ping, DUAN Zhi-qiang, et al. Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(3): 310-318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201203012.htm
[9] 尹光志, 何兵, 王浩, 等. 深部采动影响下覆岩蠕变损伤破坏规律[J]. 煤炭学报, 2015,40(6): 1390-1395. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506026.htm YIN Guang-zhi, HE Bing, WANG Hao, et al. Damage law of overlying rock induced by mining[J]. Journal of China Coal Society, 2015,40(6): 1390-1395. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506026.htm
[10] 齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(2): 347-355. doi: 10.3969/j.issn.1000-6915.2012.02.014 QI Ya-jing, JIANG Qing-hui, WANG Zhi-jian, et al. 3D creep constitutive equation of modified NISHIHARA model and its parameters identification[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 347-355. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.02.014
[11] 王路军, 周宏伟, 荣腾龙, 等. 深部煤体非线性蠕变本构模型及实验研究[J]. 煤炭学报, 2018, 43(8): 2196-2203. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201808013.htm WANG Lu-jun, ZHOU Hong-wei, RONG Teng-long, et al. Research on experimental and nonlinear creep constitutive model of coal at depth[J]. Journal of China Coal Society, 2018, 43(8): 2196-2203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201808013.htm
[12] 尹光志, 王浩, 张东明. 含瓦斯煤卸围压蠕变试验及其理论模型研究[J]. 煤炭学报, 2011, 36(12): 1963-1967. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112001.htm YIN Guang-zhi, WANG Hao, ZHANG Dong-ming. Creep experimental and theory model on coal containing gas under the condition of unloading confining pressure[J]. Journal of China Coal Society, 2011, 36(12): 1963-1967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112001.htm
[13] 蔡婷婷, 冯增朝, 姜玉龙, 等. 不同温度应力下煤体蠕变中的渗流规律研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 3898-3904. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2011.htm CAI Ting-ting, FENG Zeng-chao, JIANG Yu-long, et al. Seepage evolution in coal creep under different temperatures and different stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3898-3904. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2011.htm
[14] 江宗斌, 姜谙男, 李宏, 等. 加卸载条件下石英岩蠕变–渗流耦合规律试验研究[J]. 岩土工程学报, 2017, 39(10): 1832-1841. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710016.htm JIANG Zong-bin, JINAG An-nan, LI Hong, et al. Creep-seepage coupling laws of quartzite under cyclic loading-unloading conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1832-1841. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710016.htm
[15] 何峰, 王来贵, 王振伟, 等. 煤岩蠕变–渗流耦合规律实验研究[J]. 煤炭学报, 2011, 36(6): 930-933. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106009.htm HE Feng, WANG Lai-gui, WANG Zhen-wei, et al. Experimental study on creep-seepage coupling law of coal (rock)[J]. Journal of China Coal Society, 2011, 36(6): 930-933. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106009.htm
[16] 曹亚军, 王伟, 徐卫亚, 等. 低渗透岩石流变过程渗透演化规律试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3822-3829. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2024.htm CAO Ya-jun, WANG Wei, XU Wei-ya, et al. Permeability evolution of low-permeability rocks in triaxial creep tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3822-3829. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2024.htm
[17] GUO Z, VU P N H, HUSSAIN F. A laboratory study of the effect of creep and fines migration on coal permeability during single-phase flow[J]. International Journal of Coal Geology, 2018, 200: 61-76.
[18] DANESH N N, CHEN Z, AMINOSSADATI S M, et al. Impact of creep on the evolution of coal permeability and gas drainage performance[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 469-482.
[19] DANESH N N, CHEN Z, CONNELL L D, et al. Characterisation of creep in coal and its impact on permeability: An experimental study[J]. International Journal of Coal Geology, 2017, 173: 200-211.
[20] 谢和平, 高峰, 周宏伟, 等. 煤与瓦斯共采中煤层增透率理论与模型研究[J]. 煤炭学报, 2013, 38(7): 1101-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201307001.htm XIE He-ping, GAO Feng, ZHOU Hong-wei, et al. On theoretical and modeling approach to mining-enhanced permeability for simultaneous exploitation of coal and gas[J]. Journal of China Coal Society, 2013, 38(7): 1101-1108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201307001.htm
[21] 薛东杰, 周宏伟, 唐咸力, 等. 采动工作面前方煤岩体积变形及瓦斯增透研究[J]. 岩土工程学报, 2013, 35(2): 328-336. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302019.htm XUE Dong-jie, ZHOU Hong-wei, TANG Xian-li, et al. Mechanism of deformation-induced damage and gas permeability enhancement of coal under typical mining layouts[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 328-336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302019.htm
[22] PERERA M S A, RANJITH P G, CHOI S K. Coal cleat permeability for gas movement under triaxial, non-zero lateral strain condition: a theoretical and experimental study[J]. Fuel, 2013, 109: 389-399.
[23] 李祥春, 张良, 赵艺良. 常规三轴压力下含瓦斯煤蠕变–渗流演化规律[J]. 工程科学与技术, 2018, 50(4): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201804007.htm LI Xiang-chun, ZHANG Liang, ZHAO Yi-liang. Evolution of gas-filled coal creep-seepage under conventional triaxial compression[J]. Advanced Engineering Sciences, 2018, 50(4): 55-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201804007.htm
-
期刊类型引用(6)
1. 唐宇,阳军生,郑响凑,童甲修,汤冲. 高温富水隧道弱风化片麻岩力学特性试验研究. 岩石力学与工程学报. 2025(01): 128-139 . 百度学术
2. 马双泽,陈伟,吕聪聪,张塑彪,张帆. 高温与循环冷却对花岗岩抗剪强度影响试验研究. 矿业研究与开发. 2025(03): 137-147 . 百度学术
3. 王健翔,孙珍平,王士奎,许蕾. 高温作用后砂岩力学性能及裂纹演化特征研究. 金属矿山. 2025(04): 61-68 . 百度学术
4. 朱振南,王殿永,杨圣奇,解经宇,袁益龙,吴廷尧,田文岭,孙博文,田红,陈劲. 不同冷却速率下干热花岗岩渗透率演化特征对比研究. 岩石力学与工程学报. 2024(02): 385-398 . 百度学术
5. 周韬,范永林,陈家嵘,周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究. 矿业科学学报. 2024(03): 351-360 . 百度学术
6. 何将福,任成程,何坤,余启航,李欣儒,邓旭. 循环热冲击花岗岩微观裂隙表征与渗透特性演化规律. 煤田地质与勘探. 2024(12): 131-142 . 百度学术
其他类型引用(8)