• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于耐震时程分析法的地下结构抗震性能评价

钟紫蓝, 甄立斌, 申轶尧, 赵密, 杜修力

钟紫蓝, 甄立斌, 申轶尧, 赵密, 杜修力. 基于耐震时程分析法的地下结构抗震性能评价[J]. 岩土工程学报, 2020, 42(8): 1482-1490. DOI: 10.11779/CJGE202008013
引用本文: 钟紫蓝, 甄立斌, 申轶尧, 赵密, 杜修力. 基于耐震时程分析法的地下结构抗震性能评价[J]. 岩土工程学报, 2020, 42(8): 1482-1490. DOI: 10.11779/CJGE202008013
ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, ZHAO Mi, DU Xiu-li. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. DOI: 10.11779/CJGE202008013
Citation: ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, ZHAO Mi, DU Xiu-li. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. DOI: 10.11779/CJGE202008013

基于耐震时程分析法的地下结构抗震性能评价  English Version

基金项目: 

国家重点研发计划项目 2018YFC1504305

国家自然科学基金面上项目 51978020

广东省地震工程与应用技术重点实验室开放基金项目 2017B030314068

详细信息
    作者简介:

    钟紫蓝(1986—),男,博士,副研究员,主要从事生命线地震工程方面的研究工作。E-mail:zilanzhong@bjut.edu.cn

    通讯作者:

    赵密, E-mail:zhaomi@bjut.edu.cn

  • 中图分类号: TU311

Seismic performance evaluation of underground structures using endurance time analysis

  • 摘要: 耐震时程分析法是基于给定的目标反应谱构造地震动强度随持时不断增大的人工加速度时程曲线,并用于工程结构非线性动力时程分析,有效反映结构从弹性进入塑性直至发生破坏的全过程,进而对结构抗震性能进行综合评价。为研究该方法在地下结构抗震性能评价中的适用性,以大开地铁车站为原型,建立土–地下结构相互作用有限元模型,基于中国抗震规范的设计反应谱生成3条耐震加速度时程曲线作为地震输入,同时选择15条天然地震动进行增量动力分析,对比研究了地铁车站的地震响应特征。研究结果表明:耐震时程分析结果处于增量动力分析结果的包络线之内,并与增量动力分析结果的均值曲线吻合较好,因此,耐震时程分析方法可以作为地下结构进行抗震性能评价的一种新的高效率方法;此外,场地基本自振周期对应的加速度反应谱强度比输入地震动峰值加速度更适合作为预测地下结构地震响应的地震动强度指标。
    Abstract: The endurance time analysis (ETA) is an efficient seismic performance evaluation method characterized by developing series of seismic response compatible acceleration time histories whose amplitudes increase with the duration. The artificial endurance acceleration time histories are used as the input for engineering structures to perform nonlinear dynamic analyses. ETA can effectively capture the entire dynamic response of the structure from elastic to plastic till finally collapse, and can be used as an alternative approach to evaluate the seismic performance of structures. In order to study the applicability of this method in the seismic performance evaluation of underground structures, the Dakai subway station is taken as the prototype, and a two-dimensional finite element model considering soil-structure interaction is established. Three endurance time acceleration functions (ETAFs) are generated based on the design response spectra of Chinese seismic design code. The seismic response characteristics of the Dakai subway station subjected to three ETAFs and 15 real ground motions are compared in this study. The numerical results show that the responses of ETA generally fall between the envelopes of incremental dynamic analyses (IDA) using the real ground motions. The average response of the subway station using ETA is also in good agreement with the average results using IDA. Therefore, ETA provides a new computationally efficient alternative for seismic performance evaluation of the underground structures other than the traditional nonlinear IDA. Besides, the response spectrum corresponding to the fundamental period of the soil-structure interaction system is more preferable than the peak ground acceleration as the seismic intensity measure for the performance evaluation of the underground structures.
  • 图  1   中国抗震规范反应谱定义

    Figure  1.   Seismic design spectra in China

    图  2   耐震加速度时程曲线

    Figure  2.   Endurance time acceleration functions (ETAFs)

    图  3   大开车站结构详图

    Figure  3.   Cross-sectional details of Daikai subway station

    图  4   土–地下结构相互作用二维整体有限元模型

    Figure  4.   2D integrated finite element model for soil-structure interaction system

    图  5   不同材料本构模型

    Figure  5.   Constitutive models for different materials

    图  6   大开车站附近获取的阪神地震动记录

    Figure  6.   Kobe seismic ground motion records near Daikai subway station

    图  7   所选地震动加速度反应谱(ξ=5%)

    Figure  7.   Elastic acceleration response spectra of selected earthquake records (ξ=5%)

    图  8   车站中柱层间位移角耐震时程分析结果

    Figure  8.   Results of interstory draft of middle column for ETAs

    图  9   ETA与IDA结果对比(IM= Sa(T1))

    Figure  9.   Comparison between ETA and IDA results, IM= Sa(T1)

    图  10   ETA与IDA结果对比(IM= PGA)

    Figure  10.   Comparison between ETA and IDA results, IM= PGA

    图  11   ETA与IDA结果相关性

    Figure  11.   Correlation between ETA and IDA results

    表  1   土层物理性质表

    Table  1   Physical properties of soils

    土层信息土层深度h/m密度ρ/(kg·m-3)剪切波速vs/(m·s-1)泊松比μ黏聚力c/kPa内摩擦角φ/(°)
    人工填土0~1.019001400.332015
    全新世砂土1.0~5.119001400.32140
    全新世砂土5.1~8.319001700.32140
    更新世黏土8.3~11.419001900.403020
    更新世黏土11.4~17.219002400.303020
    更新世砂土17.2~39.220003300.26140
    下载: 导出CSV

    表  2   钢筋及混凝土材料参数

    Table  2   Material parameters of steel rebar and concrete

    材料密度ρ/(kg·m-3)弹性模量E/GPa泊松比µ屈服强度fy/MPa轴心受压强度fc0/MPa极限受压强度fu/MPa峰值压应变εc0极限压应变εcu
    混凝土2500240.1523.5200.0020.004
    钢筋78002000.30312
    下载: 导出CSV

    表  3   与已有计算结果对比

    Table  3   Comparison of numerical results with existing ones

    文献本构模型输入地震动峰值层间位移角/%误差/%中柱底部峰值荷载误差/%
    土体结构
    文献[10](2D)等效线性化模型线弹性模型Port岛地下83 m处(水平向)0.58弯矩229 kN·m
    本文(2D)非线性本构模型0.50-13.79弯矩220 kN·m-3.93
    文献[24](3D)Mohr-Coulomb模型塑性损伤模型神户大学(水平向+竖向)1.00剪力250 kN
    本文(2D)非线性本构模型纤维梁柱模型0.93-7.00剪力241 kN-3.60
    下载: 导出CSV
  • [1] 中国地震动参数区划图:GB18306—2015[S]. 2016.

    Seismic Ground Motion Parameters Zonation Map of China: GB18306—2015[S]. 2016. (in Chinese)

    [2] 韩建平, 吕西林, 李慧. 基于性能的地震工程研究的新进展及对结构非线性分析的要求[J]. 地震工程与工程振动, 2007, 27(4): 15-23. doi: 10.3969/j.issn.1000-1301.2007.04.003

    HAN Jian-ping, LÜ Xi-lin, LI Hui. State-of-the-art of performance-based earthquake engineering and need for structural nonlinear analysis[J]. Earthquake Engineering and Engineering Vibration, 2007, 27(4): 15-23. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.04.003

    [3] 刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. doi: 10.3321/j.issn:1000-131X.2008.04.011

    LIU Jing-bo, LIU Xiang-qing, LI Bin. A pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.04.011

    [4] 刘晶波, 刘祥庆, 薛颖亮. 地下结构抗震分析与设计的Pushover方法适用性研究[J]. 工程力学, 2009, 26(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm

    LIU Jing-bo, LIU Xiang-qing, XUE Ying-liang. Study on applicability of a pushover analysis method for seismic analysis and design of underground structures[J]. Engineering Mechanics, 2009, 26(1): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm

    [5] 刘晶波, 王文晖, 赵冬冬, 等. 循环往复加载的地下结构Pushover分析方法及其在地震损伤分析中的应用[J]. 地震工程学报, 2013, 35(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301004.htm

    LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Pushover analysis methed of underground structures under reversal load and its application in seismic damage analysis[J]. China Earthquake Engineering Journal, 2013, 35(1): 21-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301004.htm

    [6]

    VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514. doi: 10.1002/eqe.141

    [7] 赵冬冬. 城市地铁地下结构地震反应的试验研究与数值模拟[D]. 北京: 清华大学, 2013.

    ZHAO Dong-dong. Experimental Study and Numerical Simulation on Seismic Response of Urban Underground Subway Structures[D]. Beijing: Tsinghua University, 2013. (in Chinese)

    [8] 杨智勇, 黄宏伟, 张冬梅, 等. 盾构隧道抗震分析的静力推覆方法[J]. 岩土力学, 2012, 33(5): 1381-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205015.htm

    YANG Zhi-yong, HUANG Hong-wei, ZHANG Dong-mei, et al. Pushover method for seismic analysis of shield tunnel[J]. Rock and Soil Mechanics, 2012, 33(5): 1381-1388. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205015.htm

    [9]

    CHEN Z, CHEN W, ZHANG W. Seismic performance evaluation of multi-story subway structure based on pushover analysis[C]//Advances in Soil Dynamics and Foundation Engineering, ASCE, 2014: 444-454.

    [10] 许成顺, 许紫刚, 杜修力, 等. 地下结构抗震简化分析方法比较研究[J]. 地震工程与工程振动, 2017, 37(2): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm

    XU Cheng-shun, XU Zi-gang, DU Xiu-li, et al. Comparative study of simplified methods for seismic analysis of underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(2): 65-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm

    [11] 崔臻, 盛谦, 冷先伦, 等. 基于增量动力分析的大型地下洞室群性能化地震动力稳定性评估[J]. 岩石力学与工程学报, 2012, 31(4): 703-712. doi: 10.3969/j.issn.1000-6915.2012.04.009

    CUI Zhen, SHENG Qian, LENG Xian-lun, et al. Performance-based seismic stability assessment of large underground cavern group with incremental dynamic analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 703-712. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.04.009

    [12]

    OSMI S K C, AHMAD S M. Seismic fragility curves for shallow circular tunnels under different soil conditions[J]. World Academy of Science, Engineering and Technology, 2016; 10(10): 1281-1287.

    [13]

    LIU T, CHEN Z, YUAN Y, SHAO X. Fragility analysis of a subway station structure by incremental dynamic analysis[J]. Advances in Structural Engineering, 2016; 20(7): 1111-1124.

    [14]

    ESTEKANCHI H E, VAFAI A, SADEGHAZAR M. Endurance timemethod for seismic analysis and design of structures[J]. Scientia Iranica, 2004, 11(4): 361-370.

    [15]

    HARIRI-ARDEBILI M A, SATTAR S, ESTEKANCHI H E. Performance-based seismic assessment of steel frames using endurance time analysis[J]. Engineering Structures, 2014, 69: 216-234.

    [16]

    ESTEKANCHI H E, VALAMANESH V, VAFAI A. Application ofendurance time method in linear seismic analysis[J]. Engineering Structure, 2007, 29(10): 2551-2562.

    [17] 建筑抗震设计规范:GB50011—2010[S]. 2010.

    Code for Seismic Design of Buildings: GB50011—2010[S]. 2010. (in Chinese)

    [18] 杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

    DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage cause and disaster mechanism of Dakai subway station during 1995 Osaka-Kobe earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

    [19]

    XU Z, DU X, XU C, et al. Numerical research on seismic response characteristics of shallow buried rectangular underground structure[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 242-252.

    [20] 黄雨, 金晨, 庄之敬. 基于地震变形控制的隧道地基注浆抗液化加固效果评价[J]. 岩石力学与工程学报, 2009, 28(7): 1484-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200907025.htm

    HUANG Yu, JIN Chen, ZHUANG Zhi-jing. Assessment of anti-liquefaction grouting reinforcement effect of tunnel foundation based on earthquake-induced deformations control[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1484-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200907025.htm

    [21]

    MA C, LU D, DU X. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling & Underground Space Technology, 2018, 74: 1-9.

    [22]

    YANG Z, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.

    [23]

    PARRA-COLMENARES E J. Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems[D]. Corvallis: Oregon State University, 1996.

    [24] 李洋. 浅埋地下框架结构地震破坏机理研究[D]. 北京: 北京工业大学, 2018.

    LI Yang. Earthquake Damage Mechanism of Shallow Buried Underground Frame Structures[D]. Beijing: Beijing University of Technology, 2018. (in Chinese)

    [25]

    FEMA. Seismic Performance Assessment of Buildings Volume 1—Methodology[R]. Washington D C: Federal Emergency Management Agency, 2012.

    [26]

    FEMA. Seismic Performance Assessment of Buildings Volume 2—Implementation guide[R]. Washington D C: Federal Emergency Management Agency, 2012.

    [27] 庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801048.htm

    ZHUANG Hai-yang, CHENG Shao-ge, CHEN Guo-xing. Numerical simulation and analysis of earthquake damage of Dakai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1): 245-250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801048.htm

    [28]

    IWATATE T, KOBAYASHI Y, KUSU H, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]//Proceedings of the 12WCEE, 2000, New Zealand: 1-6.

    [29]

    RIAHI H T, ESTEKANCHI H E. Seismic assessment of steel frames with the endurance time method[J]. Journal of Constructional Steel Research, 2010, 66(6): 780-792.

  • 期刊类型引用(8)

    1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 . 百度学术
    2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
    3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 . 百度学术
    4. 张晓明,谭蓉,贺育明,强继峰,孙森林,张朝军,梁刚. 基于时频域信号特征的输电塔运行模态分析. 电网与清洁能源. 2025(03): 46-52+59 . 百度学术
    5. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 . 百度学术
    6. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 . 百度学术
    7. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 . 百度学术
    8. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 . 百度学术

    其他类型引用(7)

图(11)  /  表(3)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  37
  • PDF下载量:  218
  • 被引次数: 15
出版历程
  • 收稿日期:  2019-10-31
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回