Simplified reliability-based design method for geotechnical structures —modified quantile value method
-
摘要: 现阶段多数规范推荐的半概率设计方法分项系数法与传统容许应力设计法具有相似的设计过程,易于被岩土工程师接受。然而,当实际岩土体参数统计量及分布类型等与分项系数设计法校准过程所采用的不一致时,分项系数法的设计结果往往会产生较大偏差。分位数设计法与分项系数法设计过程相似,且能够解决分项系数法设计偏差较大的问题。遗憾的是,该方法需要事先通过大量可靠度分析建立岩土结构物设计参数与有效随机维度间的回归函数,该过程不仅计算量较大而且十分繁琐,不利于工期紧迫条件下的快速可靠度设计。为此,提出了基于修正分位数法的岩土工程简化可靠度设计方法。首先介绍了原始有效随机维度–分位数设计法(ERD-QVM)和分位一阶二次矩可靠度分析方法,在此基础上提出了基于简单迭代算法的修正分位数法。最后以桩基础设计和方形基础设计为例阐明了所提方法的有效性。结果表明:修正分位数法为工期紧迫的岩土结构物可靠度设计提供了一种有效分析工具。修正分位数法不仅能够有效地避免原始ERD-QVM需要建立关于设计参数回归函数的问题,极大地降低原始ERD-QVM的计算量,而且能够得到合理的岩土结构物设计结果。修正分位数法设计结果更保守,原始ERD-QVM可能产生偏危险的设计,这对岩土结构物稳定性非常不利。两种设计方法具有相似的设计稳健性。Abstract: Currently, the partial factor design method is recommended by most international design codes as a semi-probability design method. This popularity might be partly because the partial factor design method shares a similar design procedure as that of the conventional allowable-stress-design method and therefore is likely to be accepted by practical geotechnical engineers. However, the partial factor design method might produce significantly biased design schemes especially when the design condition (e.g., statistical and probabilistic distributions of soil properties) is different from that used in the code for partial factor calibrations. The quantile value method (i.e., effective random dimension-quantile value method, ERD-QVM) shares a similar design procedure as the partial factor design method. But it needs to calibrate the relationship between ERD and design parameters, which is tedious and computationally expensive. Consequently, it is not feasible to apply this method when the time schedule of the engineering is tight. This study proposes a simplified reliability-based design method for geotechnical structures, namely modified quantile value method (MQVM). The original ERD-QVM and the quantile first-order second-moment method (QFOSM) are reviewed. Based on the QFOSM, the MQVM is developed. A pile foundation example and a pad footing example are employed to illustrate the performance of the proposed method. It is shown that the proposed method can provide an effective tool for rapid reliability-based designs. The proposed MQVM can avoid the calibration procedure of the relationship between ERD and design parameters and yield rational design schemes. The original ERD-QVM might produce an unsafe design scheme, which poses an enormous threat to geotechnical structures. By contrast, the design scheme of MQVM is relatively conservative. Moreover, the MQVM has a robustness similar to that of ERD-QVM.
-
-
表 1 桩基础的随机变量统计值
Table 1 Statistics of random variables for pile example
随机变量 均值 变异系数/% 分布类型 静荷载DL(kN) μDL 10 对数正态 活荷载LL(kN) μLL 20 对数正态 不排水抗剪强度参数su(kPa) μsu 30 对数正态 砂土平均SPT锤击数N μN 30 对数正态 黏土转换不确定性因子εα 1.05 32 对数正态 砂土转换不确定性因子εN 1.22 70 对数正态 表 2 桩基础设计参数可行域
Table 2 Feasible ranges for pile design parameters
设计参数 下界 上界 分布类型 桩直径B/m 0.5 2.0 均匀分布 桩长L = Lc+ Ls/m 10 80 均匀分布 砂土深度与桩长的比值ts=Ls/L 0 1 均匀分布 动荷载与静荷载比值 rL/D=μLL/μDL 0.1 1.0 均匀分布 静荷载均值 μDL /kN2000 2500 均匀分布 不排水抗剪强度参数均值μsu/kPa 50 200 均匀分布 砂土平均SPT锤击数N均值 μN 10 50 均匀分布 表 3 基于1000组随机设计参数的可靠度指标统计
Table 3 Statistics of actual reliability index for 1000 verification cases
统计量 βT=1.5 βT=2.0 βT=2.5 βT=3.0 βMQ/βT βEQ/βT βMQ/βT βEQ/βT βMQ/βT βEQ/βT βMQ/βT βEQ/βT 均值 1.06 1.01 1.06 1.01 1.06 1.01 1.06 1.02 变异系数 0.03 0.04 0.02 0.02 0.02 0.01 0.02 0.02 最大值 1.10 1.07 1.10 1.06 1.10 1.06 1.11 1.07 最小值 0.99 0.94 0.99 0.96 0.99 0.96 0.99 0.96 注: βMQ为修正分位数法估计的基础宽度对应的实际可靠度指标;βEQ为ERD-QVM估计的基础宽度对应的实际可靠度指标。表 4 方形基础的随机变量统计值
Table 4 Statistics of random variables for square footing problem
随机变量 均值 变异系数 分布类型 黏聚力c/kPa μc Vc 对数正态 摩擦角 φ /(°)μφ Vφ 对数正态 水平荷载H/kN μH 15% 对数正态 垂直荷载VD/kN μV 10% 对数正态 影响变量(ic,iq,iγ)的垂直荷载VS/kN μV 10% 对数正态 表 5 方形基础设计参数可行域
Table 5 Feasible ranges for square footing design parameters
设计参数 下界 上界 分布类型 基础宽度B/m 1.5 3 均匀分布 黏聚力均值μc/kPa 10 100 均匀分布 摩擦角均值 μφ /(°)15 30 均匀分布 黏聚力变异系数Vc 0.1 0.3 均匀分布 摩擦角变异系数 Vφ 0.1 0.3 均匀分布 黏聚力与摩擦角间相关系数ρ −0.8 0.0 均匀分布 水平荷载均值 μH /kN200 400 均匀分布 垂直荷载均值 μV /kN700 1000 均匀分布 表 6 基于1000组随机设计参数的实际可靠度指标统计
Table 6 Statistics of actual reliability index for 1000 verification cases
统计量 βT=2.0 βT=2.5 βT=3.0 βT=3.5 βMQ/βT βEQ/βT βMQ/βT βEQ/βT βMQ/βT βEQ/βT βMQ/βT βEQ/βT 均值 1.04 1.01 1.04 1.01 1.03 1.01 1.02 1.01 变异系数 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 最大值 1.19 1.13 1.20 1.10 1.22 1.08 1.24 1.06 最小值 0.99 0.87 0.99 0.88 0.99 0.88 0.99 0.89 注: βMQ为修正分位数法估计的基础宽度对应的实际可靠度指标;βEQ为ERD-QVM估计的基础宽度对应的实际可靠度指标。 -
[1] LIU Y, HE L Q, JIANG Y J, et al. Effect of in-situ water content variation on the spatial variation of strength of deep cement-mixed clay[J]. Géotechnique, 2019, 69(5): 391-405. doi: 10.1680/jgeot.17.P.149
[2] LIU Y, ZHANG W G, ZHANG L, et al. Probabilistic stability analyses of undrained slopes by 3D random fields and finite element methods[J]. Geoscience Frontiers, 2018, 9(6): 1657-1664. doi: 10.1016/j.gsf.2017.09.003
[3] 邓志平, 牛景太, 潘敏, 等. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法[J]. 岩土工程学报, 2019, 41(6): 1083-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906014.htm DENG Zhi-ping, NIU Jing-tai, PAN Min, et al. Full probabilistic design method of slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1083-1090. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906014.htm
[4] 彭兴, 李典庆, 曹子君, 等. 基于蒙特卡洛模拟的岩质边坡可靠度设计方法[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3794-3804. doi: 10.13722/j.cnki.jrme.2014.1210 PENG Xing, LI Dian-qing, CAO Zi-jun, et al. Reliability-based design approach of rock slopes using Monte Carlo simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3794-3804. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.1210
[5] 陈祖煜, 黎康平, 李旭, 等. 重力式挡土墙抗滑稳定容许安全系数取值标准初探[J]. 岩土力学, 2018, 39(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801002.htm CHEN Zu-yu, LI Kang-ping, LI Xu, et al. A preliminary study of allowable factor of safety in gravity retaining wall stability analysis[J]. Rock and Soil Mechanics, 2018, 39(1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801002.htm
[6] 李典庆, 周强, 曹子君. 基于广义可靠指标相对安全率的岩土工程设计安全判据[J]. 岩土力学, 2019, 40(10): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910033.htm LI Dian-qing, ZHOU Qiang, CAO Zi-jun. Safety criteria for geotechnical design based on the generalized reliability ratio of safety margin[J]. Rock and Soil Mechanics, 2019, 40(10): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910033.htm
[7] BASHA B M, BABU G S. Target reliability-based optimization for internal seismic stability of reinforced soil structures[J]. Géotechnique, 2012, 62(1): 55-68. doi: 10.1680/geot.8.P.076
[8] GAO G H, LI D Q, CAO Z J, et al. Full probabilistic design of earth retaining structures using generalized subset simulation[J]. Computers and Geotechnics, 2019, 112: 159-172. doi: 10.1016/j.compgeo.2019.04.020
[9] FENTON G A, NAGHIBI F, DUNDAS D, et al. Reliability-based geotechnical design in 2014 Canadian highway bridge design code[J]. Canadian Geotechnical Journal, 2015, 53(2): 236-251.
[10] KIM D, SALGADO R. Load and resistance factors for external stability checks of mechanically stabilized earth walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138(3): 241-251.
[11] PHOON K K, KULHAWY F H, GRIGORIU M D. Multiple resistance factor design for shallow transmission line structure foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(9): 807-818. doi: 10.1061/(ASCE)1090-0241(2003)129:9(807)
[12] Canadian Standards Association. Canadian Highway Bridge Design Code: CAN/CSA-S6-14[S]. Mississauga, Ont, 2014.
[13] CEN (European Committee for Standardization). EN 1997-1 Eurocode 7: Geotechnical design – Part 1: General rules[S]. Brussels, 2004.
[14] GOH A T C, PHOON K K, KULHAWY F H. Reliability analysis of partial safety factor design method for cantilever retaining walls in granular soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 616-622. doi: 10.1061/(ASCE)GT.1943-5606.0000061
[15] CHING J, PHOON K K, YU J W. Linking site investigation efforts to final design savings with simplified reliability-based design methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(3): 04013032.
[16] BASHA B M, BABU G S. Target reliability-based optimisation for internal seismic stability of reinforced soil structures[J]. Géotechnique, 2012, 62(1): 55-68. doi: 10.1680/geot.8.P.076
[17] XIAO T, LI D Q, CAO Z J, et al. Full probabilistic design of slopes in spatially variable soils using simplified reliability analysis method[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2017, 11(1): 146-159. doi: 10.1080/17499518.2016.1250279
[18] WANG Y, CAO Z. Expanded reliability-based design of piles in spatially variable soil using efficient Monte Carlo simulations[J]. Soils and Foundations, 2013, 53(6): 820-834. doi: 10.1016/j.sandf.2013.10.002
[19] 杨智勇, 李典庆, 曹子君, 等. 基于广义子集模拟样本加权法的边坡多失效模式可靠度分析[J]. 岩石力学与工程学报, 2018, 37(3): 630-641. doi: 10.13722/j.cnki.jrme.2017.0643 YANG Zhi-yong, LI Dian-qing, CAO Zi-jun, et al. Efficient analysis of slope reliability with multiple failure modes using sample weighting method in generalized subset simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 630-641. (in Chinese) doi: 10.13722/j.cnki.jrme.2017.0643
[20] ZHANG Y, DER KIUREGHIAN A. Two improved algorithms for reliability analysis[C]//Reliability and Optimization of Structural Systems, 1995, Boston, MA.
[21] JI J, ZHANG C, GAO Y, et al. Reliability-based design for geotechnical engineering: an inverse form approach for practice[J]. Computers and Geotechnics, 2019, 111: 22-29. doi: 10.1016/j.compgeo.2019.02.027
[22] YANG Z Y, CHING, J. A novel simplified geotechnical reliability analysis method[J]. Applied Mathematical Modelling, 2019, 74: 337-349. doi: 10.1016/j.apm.2019.04.055
[23] CHING J, PHOON K K. A quantile-based approach for calibrating reliability−based partial factors[J]. Structural Safety, 2011, 33(4/5): 275-285.
[24] CHING J, PHOON K K, YANG J J. Role of redundancy in simplified geotechnical reliability-based design-A quantile value method perspective[J]. Structural Safety, 2015, 55: 37-48. doi: 10.1016/j.strusafe.2015.03.001
[25] LOW B. K. Probabilistic insights on a soil slope in San Francisco and a rock slope in Hong Kong[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2019, 13(4): 326-332. doi: 10.1080/17499518.2019.1606923