• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基督城易液化场地震后小应变剪切刚度演化规律研究

周燕国, 沈涛, 王越, 丁海军

周燕国, 沈涛, 王越, 丁海军. 基督城易液化场地震后小应变剪切刚度演化规律研究[J]. 岩土工程学报, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005
引用本文: 周燕国, 沈涛, 王越, 丁海军. 基督城易液化场地震后小应变剪切刚度演化规律研究[J]. 岩土工程学报, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005
ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005
Citation: ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005

基督城易液化场地震后小应变剪切刚度演化规律研究  English Version

基金项目: 

国家自然科学基金项目 51578501

国家自然科学基金项目 51778573

国家自然科学基金项目 51978613

高等学校学科创新引智计划项目 B18047

详细信息
    作者简介:

    周燕国(1978—),男,博士,教授,博士生导师,主要从事土动力学与岩土地震工程、超重力离心物理模拟方面的研究和教学工作。E-mail:qzking@zju.edu.cn

  • 中图分类号: TU435

Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch

  • 摘要: 饱和砂土场地的剪切刚度在强震扰动(如液化)后会发生显著下降并随时间逐渐恢复,因此基于震后调查获得的原位测试指标(如剪切波速)与震前原状土的相应指标之间存在差异,根据液化实例调查和原位测试指标建立的砂土抗液化强度评价方法存在系统误差。为定量评价这种差异并提出合理的修正方法,对新西兰基督城的REHS强震台站在2010年至2011年间的若干强震记录进行水平与竖向谱比(HVSR)分析,获得了该台站所在的易液化场地在地震前后小应变剪切刚度随时间的发展规律,发现场地平均刚度在震后瞬时显著下降后呈对数形式增长,恢复至相对稳定状态需要1~2周时间,而且在很长的一段时间内该刚度值均小于震前值。在此基础上,提出了综合考虑主固结和次固结作用的震后饱和砂土小应变刚度计算模型,并合理预测了REHS台站场地震后刚度随时间的恢复过程。该计算模型为将震后原位测试指标修正到对应于震前原状土的测试值提供了一种可行的手段,有助于提高当前基于液化实例调查的地震液化简化判别方法的可靠性。
    Abstract: The shear stiffness of saturated sand deposit will drop significantly under the disturbance of strong earthquake shaking (e.g., liquefaction) and then recover gradually with time. The difference between the post-earthquake field testing index and the pre-earthquake value will cause systematic error in the simplified method of liquefaction evaluation based on the field case histories. In order to evaluate this difference and propose the correction approach, the HVSR method is used to analyze the acceleration records at REHS strong motion station in Christchurch from 2010 to 2011, and to observe the time variation of the small-strain shear stiffness of the liquefiable sandy soil deposit after each strong earthquake event. It is found that the average shear stiffness of the deposit drops suddenly after earthquake and then increases logarithmically, and it will take one to two weeks to approach a relatively stable state but cannot totally recover the pre-earthquake value. By considering the combined effects of the primary consolidation and the secondary consolidation, a computational model for post-earthquake small-strain shear modulus of saturated sandy soils is proposed. The model predicts the general trend of the time-dependent development of site stiffness after the occurrence of earthquake, and can be regarded as a feasible way to correct the post-earthquake field testing index to the corresponding pre-earthquake value and help to improve the reliability of the existing simplified methods for liquefaction evaluation based on the field case histories.
  • 图  1   基于剪切波速的地震液化实例数据与分界线

    Figure  1.   vs-based field case histories and liquefaction boundary curves

    图  2   土体测量与估算剪切波速比的时变趋势

    Figure  2.   Time variation of measured to estimated velocity ratio

    图  3   基督城REHS强震台站位置(来源:www.nzgd.org.nz)

    Figure  3.   REHS strong motion station at Christchurch (source: www.nzgd.org.nz)

    图  4   REHS台站场地土层信息

    Figure  4.   Soil profile at REHS station site

    图  5   地震尾波HVSR谱比分析

    Figure  5.   HVSR analysis of seismic coda wave

    图  6   震后场地卓越频率时变规律

    Figure  6.   Evolution of fundamental frequency of earthquake site

    图  7   震后场地归一化卓越频率变化规律

    Figure  7.   Evolution of normalized fundamental frequency of earthquake site

    图  8   震后刚度发展函数预测效果

    Figure  8.   Prediction of post-earthquake stiffness function

  • [1]

    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)

    [2] 李兆焱, 袁晓铭, 曹振中, 等. 基于新疆巴楚地震调查的砂土液化判别新公式[J]. 岩土工程学报, 2012, 34(3): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203018.htm

    LI Zhao-yan, YUAN Xiao-ming, CAO Zhen-zhong, et al. New evaluation formula for sand liquefaction based on survey of Bachu Earthquake in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 483-489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203018.htm

    [3] 陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3): 301-305. doi: 10.3321/j.issn:1000-4548.2006.03.004

    CHEN Guo-xing, LI Fang-ming. Probabilistic estimation of sand liquefaction based on neural network of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 301-305. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.004

    [4]

    ANDRUS R D, STOKOE K H II. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015-1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)

    [5]

    MITCHELL J K, SOLYMAR Z V. Time-dependent strength gain in freshly deposited or densified sand[J]. Journal of Geotechnical Engineering, 1984, 110(11): 1559-1576. doi: 10.1061/(ASCE)0733-9410(1984)110:11(1559)

    [6]

    LEON E, GASSMAN S L, TALWANI P. Accounting for soil aging when assessing liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 363-377. doi: 10.1061/(ASCE)1090-0241(2006)132:3(363)

    [7]

    HAYATI H, ANDRUS D. Updated liquefaction resistance correction factors for aged sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1683-1692. doi: 10.1061/(ASCE)GT.1943-5606.0000118

    [8]

    ANDRUS R D, HAYATI H, MOHANAN N P. Correcting liquefaction resistance for aged sands using measured to estimated velocity ratio[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 735-744. doi: 10.1061/(ASCE)GT.1943-5606.0000025

    [9] 周燕国, 丁海军, 陈云敏, 等. 基于原位测试指标的砂土时间效应定量表征初步研究[J]. 岩土工程学报, 2015, 37(11): 2000-2006. doi: 10.11779/CJGE201511009

    ZHOU Yan-guo, DING Hai-jun, CHEN Yun-min, et al. Characterization of ageing effect of sands based on field testing indices[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2000-2006. (in Chinese) doi: 10.11779/CJGE201511009

    [10]

    HARDIN, B O, DRNEVICH, V P. Shear modulus and damping in soils[J]. Soil Mechanics and Foundation Engineering Div, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760

    [11]

    PAVLENKO O, IRIKURA K. Changes in shear moduli of liquefied and nonliquefied soils during the 1995 Kobe earthquake and its aftershocks at three vertical-array sites[J]. Bulletin of the Seismological Society of America, 2002, 92(5): 1952-1969. doi: 10.1785/0120010143

    [12] 孙锐, 袁晓铭. 液化土层地震动特征分析[J]. 岩土工程学报, 2004, 26(5): 684-690. doi: 10.3321/j.issn:1000-4548.2004.05.023

    SUN Rui, YUAN Xiao-ming. Analysis on feature of surface ground motion for liquefied soil layer[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 684-690. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.05.023

    [13] 孙锐, 杨洋, 陈龙伟, 等. 液化层特征量对场地卓越频率影响的理论解答[J]. 岩土工程学报, 2018, 40(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805007.htm

    SUN Rui, YANG Yang, CHEN Long-wei, et al. Analytical solutions for changes in predominant frequency of a site based on characteristic parameters of liquefiable interlayer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 811-818. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805007.htm

    [14]

    KRAMER S L. Geotechnical Earthquake Engineering[M]. New Jersey: Prentice Hall, 1996.

    [15]

    WOTHERSPOON L M, ORENSE R P, BRADLEY B A, et al. Geotechnical Characterisation of Christchurch Strong Motion Stations, Version 2.0-October 2014[R]. Auckland: The University of Auckland, 2014.

    [16]

    CHAO K, PENG Z. Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22 M6.4 Chia-Yi, Taiwan earthquake[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 179(3): 1800-1816.

    [17]

    PENG Z, BEN-ZION Y. Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the north Anatolian fault and strong ground motion[J]. Pure and Applied Geophysics, 2006, 163(2/3): 567-600.

    [18]

    DOWNES G, YETTON M. Pre-2010 historical seismicity near Christchurch, New Zealand: the 1869 MW 4.7~4.9 Christchurch and 1870 MW 5.6~5.8 Lake Ellesmere earthquakes[J]. New Zealand Journal of Geology and Geophysics, 2012, 55(3): 199-205. doi: 10.1080/00288306.2012.690767

    [19] 沈涛. 砂土地震液化小应变刚度衰减与恢复规律研究[D]. 杭州: 浙江大学, 2019.

    SHEN Tao. Reduction and Recovery of Small-Strain Stiffness During Earthquake- Induced Soil Liquefaction[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)

    [20]

    BAXTER C D P, MITCHELL J K. Experimental study on the aging of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1051-1062. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1051)

    [21]

    WANG Y H, GAO Y, LENG G. Experimental characterizations of an aging mechanism of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 142(2): 06015016.

    [22]

    HOWIE J A, SHOZEN T, VAID Y P. Effect of ageing on stiffness of very loose sand[J]. Canadian Geotechnical Journal, 2002, 39(1): 149-156. doi: 10.1139/t01-085

    [23]

    ROBERTSON P K. Estimating in-situ soil permeability from CPT & CPTU[C]//2nd International Symposium on Cone Penetration Testing. 2010, Pomona, CA, USA.

    [24]

    MOHAMMADI S D, NIKOUDEL M R, RAHIMI H, et al. Application of the dynamic cone penetrometer (DCP) for determination of the engineering parameters of sandy soils[J]. Engineering Geology, 2008, 101(3/4): 195-203.

  • 期刊类型引用(5)

    1. 田晓丹,姜晓桢,殷友超,石泽译. 基于土工膜透声特性的膜下垫层渗透变形声波特征试验研究. 水利水电科技进展. 2025(02): 31-37 . 百度学术
    2. 张宪雷,马仲阳,刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理. 岩土工程学报. 2024(11): 2333-2340 . 本站查看
    3. 张宪雷,马仲阳,吴云云. 面膜堆石坝不同品种土工膜力学特性. 岩土工程学报. 2023(05): 940-952 . 本站查看
    4. 徐国雷,张宪雷,马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理. 水电能源科学. 2022(12): 138-142 . 百度学术
    5. 黄耀英,谢同,费大伟,包腾飞,颜剑. 基于测压管实测水位的王甫洲水利工程复合土工膜工作性态反馈. 岩土工程学报. 2021(03): 564-571 . 本站查看

    其他类型引用(2)

图(8)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  24
  • PDF下载量:  151
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-08-26
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-07-31

目录

    /

    返回文章
    返回