Electrokinetic migration and removal of lead pollutants in kaolin
-
摘要: 以人工配制的铅污染高岭土为研究对象,引入新型电动土工合成材料电极,研究铅污染土的电动修复机理。采用两种不同的电动修复手段,通过分析电动修复过程中的电流、土体pH以及铅元素的存在形态,研究不同添加剂对铅污染土去除效率的影响及两种修复手段的差异性。结果表明:电动修复换水试验电流后期存在明显下降阶段,而循环试验电流后期没有下降,而是小幅波动;针对铅污染物修复而言,醋酸类添加剂比柠檬酸类添加剂更有利于铅的去除;柠檬酸与铅离子易生成难电离物质不利于铅的迁移,乙二胺四乙酸二钠能与绝大多数铅离子络合形成络合离子;通过蠕动泵循环阴、阳极电解液可以较好地控制电解水产生的氢离子和氢氧根,避免其对土体pH及重金属形态产生明显影响;修复试验中离子扩散和电解液循环引起的冲刷作用迁移出的重金属较少,占比小于10%,进一步说明电动法去除土体重金属污染物的有效性。
-
关键词:
- 电动修复 /
- 铅污染高岭土 /
- 添加剂 /
- 循环电解液 /
- 电动土工合成材料(EKG)
Abstract: The artificially prepared lead-contaminated kaolin is used as the research object with a new type of electrokinetic geosynthetics (EKG) as electrode to study the mechanism of electrokinetic remediation of lead-contaminated kaolin. Two different electrokinetic remediation methods are used. The effects of different additives on the removal efficiency of heavy metals in contaminated soil and the differences of the two repair methods are studied by analyzing the current, soil pH and the existing forms of lead elements. The results show that the later stage of current variation for the renewal electrolyte method of electrokinetic remediation tests has a significant decline pattern, while that for the electrolyte cycle method has a slightly fluctuating pattern instead. For the remediation of lead-contaminated soil, the additive of the acetic is more effective to the removal of lead than that of the citric. Citric acid and lead ions are easy to form substances that are difficult to ionize, which is poor for lead migration. The ethylenediaminetetraacetic acid disodium can complex with most lead ions to form complex ions. The hydrogen ion and hydroxide radical produced by electrolytic water can be well controlled by circulating cathode and anode electrolyte with peristaltic pump, so as to reduce their impact on the soil pH and heavy metal speciation. In the tests, the removal of heavy metals by ion diffusion and scouring caused by the electrolyte circulation is less than 10%. This further illustrates the effectiveness of the electrokinetic method in removing heavy metal contaminants from soil. -
-
表 1 高岭土初始理化性质
Table 1 Initial physicochemical properties of kaolin
相对密度 含水率/% 塑限/% 液限/% Pb含量/(mg·kg-1) pH值(土壤和水1∶2.5) 2.75 1.12 18.5 31.7 未检出 6.30 表 2 电动修复换水试验设计
Table 2 Design of updating electrolyte experiments
编号 添加剂种类 阴极控制剂 电压梯度/(V·cm-1) 通电时间/d Exp-1 — — 1 3 Exp-2 柠檬酸 柠檬酸 1 3 Exp-3 柠檬酸、磷酸氢二钠 柠檬酸、磷酸氢二钠 1 3 Exp-4 醋酸、醋酸钠 醋酸、醋酸钠 1 3 Exp-5 醋酸 醋酸 1 3 Exp-6 醋酸、醋酸钠 醋酸、醋酸钠 2 4 注: Exp-2~6均将土壤酸化到pH=3~4;Exp-3、Exp-4、Exp-6加入添加剂的浓度都为0.2 mol/L。表 3 电动修复循环试验设计
Table 3 Design of circulating electrolyte experiments
编号 添加剂种类 吸附材料 试验方式 电压梯度/(V·cm-1) 通电时间/d Exp-7 醋酸、EDTA-2Na — 换水 2 4 Exp-8 醋酸、EDTA-2Na A 循环 2 4 Exp-9 醋酸、醋酸钠、EDTA-2Na A 循环 2 4 Exp-10 醋酸、醋酸钠、EDTA-2Na A 循环 0 4 注: A为重金属吸附树脂。表 4 Pb2+与醋酸、EDTA-2Na共存形式
Table 4 Coexistence forms of Pb2+ with acetic acid and EDTA2Na
种类 浓度/(mol·L-1) 占比/% PbEDTA2- 3.8×10-3 97.46 PbHEDTA- 9.8×10-5 2.52 PbH2EDTA 4.7×10-7 0.01 其他 — 0.01 表 5 各部分铅元素含量占迁移出总量的比值
Table 5 Ratios of lead content in each part to total amount of migration
铅迁移出的位置 吸附树脂 阴极电解液 阳极电解液 其他 占比/% 20.20 68.35 5.42 6.08 -
[1] 李欣. 电动修复技术机理及去除污泥和尾砂中重金属的研究[D]. 长沙: 湖南大学, 2007: 1-8. LI Xin. Research on the Principle of Electro-Remediation Technology and Application in Removal of Heavy Metal in Sludge and Tailings[D]. Changsha: Hunan University, 2007: 1-8. (in Chinese)
[2] 刘又畅. 电动力学新技术及其在重金属污染土壤修复中的应用研究[D]. 重庆: 重庆大学, 2014: 1-5. LIU You-chang. A New Electrokinetic Technique and its Application in Remediation of Heavy Metal Contaminated Soils[D]. Chongqing: Chongqing Universit, 2014: 1-5. (in Chinese)
[3] 庄艳峰. 电渗排水固结的设计理论和方法[J]. 岩土工程学报, 2016, 38(增刊): 152-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1030.htm ZHUANG Yan-feng. Theory and design method for electro-osmotic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S0): 152-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1030.htm
[4] 王协群, 邹维列. 电动土工合成材料的特性及应用[J]. 武汉理工大学学报, 2002, 24(6): 62-65. doi: 10.3321/j.issn:1671-4431.2002.06.019 WANG Xie-qun, ZOU Wei-lie. Characteristics and application of electric geosynthetics[J]. Journal of Wuhan University of Technology, 2002, 24(6): 62-65. (in Chinese) doi: 10.3321/j.issn:1671-4431.2002.06.019
[5] 庄艳峰, 邹维列, 王钊, 等. 一种可导电的塑料排水板: 201210197981.4[P]. 2012-10-10. [6] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution survey communique[J]. China Environmental Protection Industry, 2014, 36(5): 10-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBY201405004.htm
[7] 袁立竹. 强化电动修复重金属复合污染土壤研究[D]. 长春: 中国科学院大学东北地理与农业生态研究所, 2017: 37-39. YUAN Li-zhu. Enhanced Electrokinetic Remediation of Multi-Metals Contaminated Soil[D]. Changchun: Northeast Institute of Geography and Agricultural Ecology, University of Chinese Academy of Sciences, 2017: 37-39. (in Chinese)
[8] AMMAMI M T, BENAMAR A, WANG H, et al. Simultaneous electrokinetic removal of polycyclic aromatic hydrocarbons and metals from asediment using mixed enhancing agents[J]. International Journal of Environmental Science and Technology, 2014, 11(7): 1801-1816. doi: 10.1007/s13762-013-0395-9
[9] 吴蝉, 袁松虎, 万金忠, 等. 原电池驱动污染高岭土中镉的点动力修复[J]. 环境化学, 2008, 27(2): 168-171. doi: 10.3321/j.issn:0254-6108.2008.02.007 WU Chan, YUAN Song-hu, WAN Jin-zhong, et al. Point-dynamic repair of cadmium in polluted kaolin by primary battery[J]. Environmental Chemistry, 2008, 27(2): 168-171. (in Chinese) doi: 10.3321/j.issn:0254-6108.2008.02.007
[10] 陆小成, 黄星发, 程炯佳, 等. 模拟土壤组分高岭土和蒙脱石中Cu(Ⅱ)污染的电动修复研究[J]. 中国科技论文在线, 2007, 8(2): 577-581. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX200708009.htm LU Xiao-cheng, HUANG Xing-fa, CHENG Yu-jia, et al. Research on the electrokinetic remediation of Cu(II) pollution in simulated soil components kaoline and montmorillonite[J]. Sciencepaper Online, 2007, 8(2): 577-581. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX200708009.htm
[11] 甘文君, 何跃, 张孝飞, 等. 电镀厂污染土壤重金属形态及淋洗去除效果[J]. 生态与农村环境学报, 2012, 28(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201201016.htm GAN Wen-jun, HE Yue, ZHANG Xiao-fei, et al. Speciation analysis of heavy metals in soils polluted by electroplating and effect of washing to the removal of the pollutants[J]. Journal of Ecology and Rural Environment, 2012, 28(1): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201201016.htm
[12] 杨长明, 李建华, 仓龙. 城市污泥重金属电动修复技术与应用研究进展[J]. 净水技术, 2008, 27(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS200804003.htm YANG Chang-ming, LI Jian-hua, CANG Long. A review: electrokinetic remediation technology and its applications for heavy metals removal from sewage sludge[J]. Water Purification Technology, 2008, 27(4): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS200804003.htm
[13] 生活饮用水卫生标准:GB 5749—2006[S]. 2006. Hygienic Standard for Drinking Water: GB 5749—2006[S]. 2006. (in Chinese)
[14] 中国环境监测总站. 土壤元素的近代分析方法[M]. 北京: 中国环境科学出版社, 1992. China National Environmental Monitoring Center. Modern Analysis Method of Soil Elements[M]. Beijing: China Environmental Science Press, 1992. (in Chinese)
[15] KIMURA T, TAKASE K I, TANAKA S. Concentration of copper and a copper-EDTA complex at the pH junction formed in soil by an electrokinetic remediation process[J]. Journal of Hazardous Materials, 2007, 143(3): 668-672.
[16] 李俊翔. 电动修复土壤重金属(Pb)污染的研究[D]. 广州: 广东工业大学, 2016: 25-27. LI Jun-xiang. Research on Remediating Heavy Metals Pb Contaminated Soil by Electrokinetic[D]. Guangzhou: Guangdong University of Technology, 2016: 25-27. (in Chinese)
[17] 温东东. 重金属污染土壤电动修复[D]. 上海: 华东理工大学, 2017: 14-16. WEN Dong-dong. Electrokinetic Remediation of Soil Contaminated by Heavy Metals and its Mechanism[D]. Shanghai: East China University of Science and Technology, 2017: 14-16. (in Chinese)
[18] 樊萌. 城市生活垃圾焚烧飞灰中重金属(Cd/Pb/Zn)添加电动去除实验研究[D]. 重庆: 重庆大学, 2013: 39-40. FAN Meng. Study on Enhanced Electrokinetic Removal Technology on Heavy Metals(Cd/Pb/Zn)in Municipal Solid Waste Incinerate Fly Ash[D]. Chongqing: Chongqing University, 2013: 39-40. (in Chinese)
[19] 樊广萍, 朱海燕, 郝秀珍, 等. 不同的添加试剂对重金属污染场地土壤的电动修复影响[J]. 中国环境科学, 2015, 35(5): 1458-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505036.htm FAN Guang-ping, ZHU Hai-yan, HAO Xiu-zhen, et al. Electrokinetic remediation of an electroplating contaminated soil with different enhancing electrolytes[J]. China Environmental Science, 2015, 35(5): 1458-1465. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201505036.htm
[20] ACAR Y B, ALSHAWABKEH A N. Principles of electrokinetic remediation[J]. Environmental Science & Technology, 1993, 27(13): 2638-2647.
[21] LI D, HUANG T, LIU K. Near-anode focusing phenomenon caused by the coupling effect of early precipitation and backward electromigration in electrokinetic remediation of MSWI fly ashes[J]. Environmental Technology, 2016, 37(2): 216-227.