• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于上限理论的预留土支护基坑极限抗力分析

秦会来, 周予启, 黄茂松, 周同和

秦会来, 周予启, 黄茂松, 周同和. 基于上限理论的预留土支护基坑极限抗力分析[J]. 岩土工程学报, 2020, 42(6): 1101-1107. DOI: 10.11779/CJGE202006014
引用本文: 秦会来, 周予启, 黄茂松, 周同和. 基于上限理论的预留土支护基坑极限抗力分析[J]. 岩土工程学报, 2020, 42(6): 1101-1107. DOI: 10.11779/CJGE202006014
QIN Hui-lai, ZHOU Yu-qi, HUANG Mao-song, ZHOU Tong-he. Passive earth pressure analysis of berm-retained excavation by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1101-1107. DOI: 10.11779/CJGE202006014
Citation: QIN Hui-lai, ZHOU Yu-qi, HUANG Mao-song, ZHOU Tong-he. Passive earth pressure analysis of berm-retained excavation by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1101-1107. DOI: 10.11779/CJGE202006014

基于上限理论的预留土支护基坑极限抗力分析  English Version

基金项目: 

国家自然科学基金重点项目 51738010

详细信息
    作者简介:

    秦会来(1979—),男,博士,主要从事岩土工程的研发、设计与施工方面的工作。E-mail: huilaiqin@163.com

  • 中图分类号: TU43

Passive earth pressure analysis of berm-retained excavation by upper bound method

  • 摘要: 预留土支护基坑被动区的抗力大小与分布是预留土支护基坑分析设计的基础,但目前还没找到预留土支护基坑被动区抗力计算的合理方法。根据预留土支护的特点,基于极限分析上限理论,运用竖向条块对预留土支护基坑被动区进行离散,并构建相容速度场,从而提出了预留土支护基坑被动区极限抗力的上限解法。借助优化技术对相容速度场的优化分析获得了预留土支护基坑被动区抗力的最优上限解。为检验所提出上限解法的合理性,对不同挡墙高度、地质参数等条件下的被动土压力进行了计算,并与经典朗肯理论解的土压力值以及破坏面进行对比。应用所提出的预留土支护基坑被动区抗力上限方法,对不同预留土顶部宽度、预留土底部宽度、预留土高度以及预留土边坡坡度系数等参数条件下的被动区极限抗力值、极限抗力沿深度的分布以及破坏面进行了计算分析,讨论了这些参数对预留土支护基坑被动区抗力以及破坏面的影响规律。所提方法为今后预留土支护基坑的设计以及优化设计奠定了基础。
    Abstract: The passive earth pressure should be known for the design of the berm-retained excavation, but no reasonable method for calculating the passive earth pressure has been found until now. According to the characteristics of the berm-retained excavation, the upper bound method based on the limit analysis theory is used to analyze the passive earth pressure provided by the passive soil area. To use the upper bound method, the vertical slice blocks are used to separate the passive soil area of the berm-retained excavation, and a compatible speed field is constructed. The optimization analysis technology is used to obtain the minimum upper bound solution. In order to test the rationality of the proposed upper bound solution, the passive earth pressures with different wall heights, geological parameters and other conditions are calculated by the proposed upper bound method, and the values and failure envelops are compared with the classical Rankine’s solutions. By employing the proposed upper bound method, the value of the passive earth pressure, the distribution of the passive earth pressure along the retaining wall, the failure envelops of passive soil area are studied under different parameters such as the berm top width, berm bottom width, berm height and berm slope coefficient. The influences of these parameters on the passive earth pressure and the failure envelops are discussed. The proposed method may lay the foundation for the design and optimization design of the berm-retained excavation in the future.
  • 图  1   预留土抗力区相容速度场离散模式

    Figure  1.   Kinematically admissible failure mechanism for soil retaining berm

    图  2   条块间的两种相容速度关系

    Figure  2.   Two possible velocity compatibilities between adjacent blocks

    图  3   水平层状地层示意图

    Figure  3.   Schematic graph of the horizontal soil layers

    图  4   与经典朗肯理论破坏面的对比

    Figure  4.   Comparison between failure envelopes and Rankine’s theoretical solution

    图  5   极限抗力随预留土顶部宽度bt的变化

    Figure  5.   Variation of passive earth pressure with top width of earth berm

    图  6   不同预留土顶部宽度bt条件下的破坏面(m=1.25)

    Figure  6.   Failure envelopes under different berm top widths (m=1.25)

    图  7   极限抗力随预留土底部宽度bb的变化

    Figure  7.   Variation of passive earth pressure with bottom width of earth berm

    图  8   预留土支护被动区抗力分布求解

    Figure  8.   Deciding of distribution of passive earth pressure

    图  9   预留土支护被动区抗力分布与朗肯理论对比

    Figure  9.   Comparison between distribution of passive earth pressure and Rankine’s theory

    图  10   不同深度位置的破坏面

    Figure  10.   Failure envelopes at different depths

    表  1   计算与对比

    Table  1   Calculation and comparison

    墙高/m黏聚力/kPa内摩擦角/(°)朗肯理论值/kN本文计算值/kN
    51020652.72652.72
    51520724.12724.12
    51026800.30800.30
    51526880.32880.32
    1014182279.812279.82
    1022182500.042500.06
    1014152063.302063.31
    1020152219.692219.70
    下载: 导出CSV
  • [1] 李顺群, 郑刚, 王英红. 反压土对悬臂式支护结构嵌固深度的影响研究[J]. 岩土力学, 2011, 32(11): 3427-3431. doi: 10.3969/j.issn.1000-7598.2011.11.037

    LI Shun-qun, ZHENG Gang, WANG Ying-hong. Influence of earth berm on embedment depth of cantilever retaining structure for pit excavation[J]. Rock and Soil Mechanics, 2011, 32(11): 3427-3431. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.037

    [2] 龚剑, 王旭军, 赵锡宏. 深大基坑首层盆式开挖对基坑变形影响分析[J]. 岩土力学, 2013, 34(2): 439-448. doi: 10.16285/j.rsm.2013.02.041

    GONG Jian, WANG Xu-jun, ZHAO Xi-hong. Analysis level basin excavation on deformation of deep and large foundation pits[J]. Rock and Soil Mechanics, 2013, 34(2): 439-448. (in Chinese) doi: 10.16285/j.rsm.2013.02.041

    [3]

    FLEMING W G K, WELTMAN A J, RANDOLPH M F, et al. Piling Engineering[M]. London, New York: Taylor & Francis, 2008.

    [4]

    POWRIE W, DALY M P. Centrifuge model tests on embedded retaining walls supported by earth berms[J]. Géotechnique, 2002, 52(2): 89-106. doi: 10.1680/geot.2002.52.2.89

    [5]

    DALY M P, POWRIE W. Undrained analysis of earthberms as temporary supports for embedded retaining walls[J]. Proceeding of the Institution of Civil Engineers- Geotechnical Engineering, 2001, 149(4): 237-248. doi: 10.1680/geng.2001.149.4.237

    [6]

    SMETHURST J A, POWRIE W. Effective-stress analysis of berm-supported retaining walls[J]. Proceeding of the Institution of Civil Engineers-Geotechnical Engineering, 2008, 161(1): 39-48.

    [7] 郑刚, 陈红庆, 雷扬, 等. 基坑开挖反压土作用机制及其简化分析方法研究[J]. 岩土力学, 2007, 28(6): 1161-1166. doi: 10.3969/j.issn.1000-7598.2007.06.018

    ZHENG Gang, CHEN Hong-qing, LEI Yang, et al. A study of mechanism of earth berm and simplified analysis method for excavation[J]. Rock and Soil Mechanics, 2007, 28(6): 1161-1166. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.06.018

    [8] 张浩, 郭院成, 石名磊, 等. 坑内预留土作用下多支点支护结构的变形内力计算[J]. 岩土工程学报, 2018, 40(1): 162-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801021.htm

    ZHANG Hao, GUO Yuan-cheng, SHI Ming-lei, et al. Calculation of deformation and internal force of multi-pivot retaining structure considering influence of earth berm[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 162-168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801021.htm

    [9]

    GEORGIADIS M, ANAGNOSTOPOULOS C. Effect of berms on sheet pile wall behavior[J]. Géotechnique, 1998, 48(4): 569-574. doi: 10.1680/geot.1998.48.4.569

    [10]

    GOURVENEC S M, POWRIE W. Three-dimensional finite element analysis of embedded retaining walls supported by discontinuous earth berms[J]. Canadian Geotechnical Journal, 2000, 37(5): 1062-1077. doi: 10.1139/t00-033

    [11] 尹盛斌. 基坑预留土台的简化分析方法研究[J]. 岩土力学, 2016, 37(2): 524-536. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602029.htm

    YIN Sheng-bin. A simplified analysis method for earth berm in foundation pit[J]. Rock and Soil Mechanics, 2016, 37(2): 524-536. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602029.htm

    [12] 刘畅, 孙盼盼, 赵露伟, 等. 基坑开挖反压土截面特性对基坑性状影响的有限元分析[J]. 地下空间与工程学报, 2017, 13(3): 788-795. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201703033.htm

    LIU Chang, SUN Pan-pan, ZHAO Lu-wei, et al. Finite element analysis of earth berm excavation pit traits affect section properties[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 788-795. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201703033.htm

    [13]

    CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Science, 1975.

    [14] 秦会来, 黄茂松, 马少坤. 黏土基坑抗隆起稳定分析的多块体上限解[J]. 岩石力学与工程学报, 2010, 29(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001008.htm

    QIN Hui-lai, HUANG Mao-song, MA Shao-kun. Multi-block upper bound method for basal heave stability analysis of braced excavation in clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 73-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001008.htm

    [15] 秦会来, 黄茂松. 双层地基极限承载力的极限分析上限法[J]. 岩土工程学报, 2008, 30(4): 611-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200804027.htm

    QIN Hui-lai, HUANG Mao-song. Upper-bound method for calculating bearing capacity of strip footings on two-layer soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 611-616. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200804027.htm

    [16]

    MICHALOWSKI R L. Slope stability analysis: a kinematical approach[J]. Géotechnique, 1995, 45(2): 283-293.

    [17] 宋春霞, 黄茂松, 周维祥. 黏土地层隧道开挖面三维稳定性上限分析[J]. 岩土工程学报, 2015, 37(4): 650-658. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504012.htm

    SONG Chun-xia, HUANG Mao-song, ZHOU Wei-xiang. Three-dimensional face stability analysis of tunnels in cohesive soils by upper bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 650-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504012.htm

    [18]

    DRESCHER A, DETOURNAY E. Limit load in translational failure mechanisms for associative and nonassociative materials[J]. Géotechnique, 1993, 43(3): 443-456.

    [19]

    DONALD I B, CHEN Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods[J]. Canadian Geotechnical Journal, 1997, 34(6): 853-862.

图(10)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-05-31

目录

    /

    返回文章
    返回