Cross-scale crack evolution analysis for face slab in concrete faced rockfill dams under strong earthquake
-
摘要: 准确定位面板薄弱区域、定量评价面板破坏程度对面板坝抗震安全评价至关重要。联合非完全点对点界面和四分树网格生成技术,实现了面板坝面板与垫层接触作用的两级跨尺度精细化建模;引入混凝土黏聚力模型并联合筑坝材料广义塑性模型、状态相关的弹塑性接触面模型考虑材料强非线性和破坏过程,建立了强震作用下面板动力弹塑性跨尺度开裂演化分析方法,并研发了显式地震波动分析框架下的SBFEM-FEM耦合计算软件。以200 m级面板坝为例进行了面板动力破坏数值分析,并分别考虑了面板配筋率、竖向地震和坝前水深的影响。结果表明:十分直观地再现面板坝防渗面板的动力开裂演化过程,有助于定位面板局部薄弱区域、定量评价面板破坏程度以及评估抗震措施加固效果,为混凝土面板抗震优化设计和极限抗震能力评估提供技术支持。可拓展用于其它混凝土防渗结构破坏计算,且可容易地扩展至三维分析应用。Abstract: It is crucially important for seismic safety evaluation of high concrete faced rockfill dams (CFRDs) to accurately locate the weak area of the panel and to quantitatively assess the damage of the face slab. In this study, the cross-scale model for CFRD is established using the interface element with asymmetric nodes and Quadtree for refined simulation of slab and cushion interaction. The cohesive zone model for concrete, the generalized plastic model for rockfill and the state-dependent elasto-plastic interface model are combined and used to describe the strong nonlinearity and failure process. On the above basis, the cross-scale crack evolution analysis method under strong earthquake is established and the coupled SBFEM-FEM analysis software is developed in the explicit earthquake wave motion input method frame. The dynamic failure analyses of slabs are performed for a 200-m-high CFRD considering the reinforcement ratio, vertical earthquake and water level of reservoir. The results indicate that the developed method can visually represent the seismic cracking evolution, conveniently locate weak areas of face slab, quantitatively determine the damage severity, and evaluate the aseismic measures. The research results may provide an effective method for the aseismic design and assessment of ultimate aseismic capacity of concrete slab. The proposed method can be extended to the failure analyses of other concrete structures and three-dimensional investigation and application easily.
-
Keywords:
- strong earthquake /
- CFRD /
- cracking evolution /
- cohesive zone model /
- elasto-plastic analysis /
- cross-scale
-
-
表 1 面板和基岩线弹性模型参数
Table 1 Parameters of slab and bedrock
名称 E/GPa ρ/(kg·m-3) 面板 31 2500 0.17 基岩 10 2400 0.25 表 2 配筋率对面板动力开裂的影响
Table 2 Influences of reinforcement ratio on crack width
配筋率/% 地震中最大裂缝宽度/mm 震后残余裂缝宽度/mm 0.3 15.0 1.7 0.6 11.3 1.4 0.9 0.1 0.0 表 3 坝前水深对面板动力开裂的影响
Table 3 Influences of water level on crack width
坝前水深/m 地震中最大裂缝宽度/mm 震后残余裂缝宽度/mm 190 20.0 1.2 170 0.1 0.0 140 0.0 0.0 -
[1] 孔宪京, 邹德高, 刘京茂. 高土石坝抗震安全评价与抗震措施研究进展[J]. 水力发电学报, 2016, 35(7): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201607001.htm KONG Xian-jing, ZOU De-gao, LIU Jing-mao. Developments in seismic safety evaluation methods and aseismic measures for high rockfill dams[J]. Journal of Hydroelectric Engineering, 2016, 35(7): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201607001.htm
[2] 陈生水, 阎志坤, 傅中志, 等. 特高面板砂砾石坝结构安全性论证[J]. 岩土工程学报, 2017, 39(11): 1949-1958. doi: 10.11779/CJGE201711001 CHEN Sheng-shui, YAN Zhi-kun, FU Zhong-zhi, et al. Evaluation of safety performance of extremely high slab-faced gravel dams[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1949-1958. (in Chinese) doi: 10.11779/CJGE201711001
[3] 刘京茂, 孔宪京, 邹德高. 接触面模型对面板与垫层间接触变形及面板应力的影响[J]. 岩土工程学报, 2015, 37(4): 700-710. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504019.htm LIU Jing-mao, KONG Xian-jing, ZOU De-gao. Effects of interface models on deformation of interface between slab and cushion layer and slab stress of concrete faced rock fill dam[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 700-710. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504019.htm
[4] QU Yong-qian, ZOU De-gao, KONG Xian-jing, et al. Seismic damage performance of the steel fiber reinforced face slab in the concrete-faced rockfill dam[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 320-330. doi: 10.1016/j.soildyn.2019.01.018
[5] XU Bin, ZOU De-gao, KONG Xian-jing, et al. Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model[J]. Computers and Geotechnics, 2015, 65: 258-265. doi: 10.1016/j.compgeo.2015.01.003
[6] DAKOULAS P. Longitudinal vibrations of tall concrete faced rockfill dams in narrow canyons[J]. Soil Dynamics and Earthquake Engineering, 2012, 41: 44-58. doi: 10.1016/j.soildyn.2012.05.010
[7] HILLERBORG A, MODEER M, PETERSON E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6: 773-82. doi: 10.1016/0008-8846(76)90007-7
[8] ARICI Y. Investigation of the cracking of CFRD face plates[J]. Computers and Geotechnics, 2011, 38(7): 905-916. doi: 10.1016/j.compgeo.2011.06.004
[9] CEN Wei-jun, WEN Lang-sheng, ZHANG Zi-qi, et al. Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams[J]. Water Science and Engineering, 2016, 9(3): 205-211. doi: 10.1016/j.wse.2016.09.001
[10] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962(7): 55-129.
[11] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
[12] DAI Qing-li, NG K. 2D cohesive zone modeling of crack development in cementitious digital samples with microstructure characterization[J]. Construction and Building Materials, 2014, 54: 584-595. doi: 10.1016/j.conbuildmat.2013.12.095
[13] PAN Jian-wen, ZHANG Chu-han, XU Yan-jie, et al. A comparative study of the different procedures for seismic cracking analysis of concrete dams[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1594-1606. doi: 10.1016/j.soildyn.2011.06.011
[14] SU Xiang-ting, YANG Zhen-jun, LIU Guo-hua. Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus[J]. Acta Mechanica Solida Sinica, 2010, 23(3): 271-282. doi: 10.1016/S0894-9166(10)60030-4
[15] QU Yong-qian, ZOU De-gao, KONG Xian-jing, et al. A novel interface element with asymmetric nodes and its application on concrete-faced rockfill dam[J]. Computers and Geotechnics, 2017, 85: 103-116. doi: 10.1016/j.compgeo.2016.12.013
[16] CHEN Kai, ZOU De-gao, KONG Xian-jing, et al. Global concurrent cross-scale nonlinear analysis approach of complex CFRD systems considering dynamic impervious panel-rockfill material-foundation interactions[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 51-68. doi: 10.1016/j.soildyn.2018.06.027
[17] 周墨臻, 张丙印, 张宗亮, 等. 超高面板堆石坝面板挤压破坏机理及数值模拟方法研究[J]. 岩土工程学报, 2015, 37(8): 1426-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508014.htm ZHOU Mo-zhen, ZHANG Bing-yin, ZHANG Zong-liang, et al. Mechanisms and simulation methods for extrusion damage of concrete faces of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1426-1432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508014.htm
[18] CHEN Kai, ZOU De-gao, KONG Xian-jing, et al. A novel nonlinear solution for the polygon scaled boundary finite element method and its application to geotechnical structures[J]. Computers and Geotechnics, 2017, 82: 201-210. doi: 10.1016/j.compgeo.2016.09.013
[19] CHEN Kai, ZOU De-gao, KONG Xian-jing, et al. An efficient nonlinear octree SBFEM and its application to complicated geotechnical structures[J]. Computers and Geotechnics, 2018, 96: 226-245. doi: 10.1016/j.compgeo.2017.10.021
[20] CHEN Kai, ZOU De-gao, KONG Xian-jing, et al. Elasto- plastic fine-scale damage failure analysis of metro structures based on coupled SBFEM-FEM[J]. Computers and Geotechnics, 2019, 108: 280-294. doi: 10.1016/j.compgeo.2018.12.030
[21] QU Yong-qian, ZOU De-gao, KONG Xian-jing, et al. A flexible various-scale approach for soil-structure interaction and its application in seismic damage analysis of the underground structure of nuclear power plants[J]. Science China Technological Sciences, 2018, 61(7): 1092-1106. doi: 10.1007/s11431-017-9269-7
[22] GONG Jin, ZOU De-gao, KONG Xian-jing, et al. An extended meshless method for 3D interface simulating soil-structure interaction with flexibly distributed nodes[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 1-15.
[23] DU J, YON J H, HAWKINS N M, et al. Fracture process zone for concrete for dynamic loading[J]. ACI Material Journal 1992, 89(3): 252-258.
[24] PASTOR M, ZIENKIEWICZ O C. A generalized plasticity, hierarchical model for sand under monotonic and cyclic loading[C]//Proceedings of the 2nd International Symposium on Numerical Models in Geomechanic, 1986, Ghent: 131-149.
[25] XU Bin, ZOU De-gao, LIU Hua-bei. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J]. Computers and Geotechnics, 2012, 43: 143-154. doi: 10.1016/j.compgeo.2012.03.002
[26] LIU Jing-mao, ZOU De-gao, KONG Xian-jing. A three-dimensional state-dependent model of soil–structure interface for monotonic and cyclic loadings[J]. Computers and Geotechnics, 2014, 61: 166-177. doi: 10.1016/j.compgeo.2014.05.012
[27] 刘晶波, 吕彦东. 结构–地基动力相互作用问题分析的一种直接方法[J]. 土木工程学报, 1998, 31(3): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199803008.htm LIU Jing-bo, LÜ Yan-dong. A direct method for analysis of dynamic soil-structure interaction[J]. China Civil Engineering Journal, 1998, 31(3): 55-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199803008.htm
[28] 余翔, 孔宪京, 邹德高, 等. 覆盖层上土石坝非线性动力响应分析的地震波动输入方法[J]. 岩土力学, 2018, 39(5): 1858-1866, 1876. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805039.htm YU Xiang, KONG Xian-jing, ZOU De-gao, et al. Seismic wave input method for nonlinear dynamic analysis of earth dam built on overburden[J]. Rock and Soil Mechanics, 2018, 39(5): 1858-1866, 1876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805039.htm
[29] 水电工程水工建筑物抗震设计规范:NB 35047—2015[S]. 2015. Code for Seismic Design of Hydraulic Structures of Hydropower Project: NB 35047—2015[S]. 2015. (in Chinese)
-
期刊类型引用(4)
1. 张平. FPSO内转塔单点吸力锚运输吊装分析. 石油和化工设备. 2025(01): 109-113 . 百度学术
2. 周闯,钱建固,尹振宇. 各向异性砂土渗流潜蚀流体动力学-离散元流固耦合分析. 岩土力学. 2024(01): 302-312 . 百度学术
3. 韩树鑫,邓学晶,李望晨,于龙,管龙飞. 吸力锚贯入引发的浅层水合物解离和储层孔隙压力再分布研究. 中国造船. 2024(03): 197-204 . 百度学术
4. 郭敏,殷鹏程,勾红叶,谭庄,梁金宝. 洪水作用下高速铁路桥梁动力响应研究. 铁道标准设计. 2024(08): 99-107 . 百度学术
其他类型引用(5)