Theory of artesian well flow in ancient river in Wuhan and its application in foundation pit dewatering
-
摘要: 在分析武汉市古河道特殊水文地质条件的基础上,建立古河道水文地质模型,将古河道承压水井流问题概化为带状承压含水层中地下水向抽水井的运动问题;然后结合镜像法原理,引入吉林斯基势函数,推导出古河道承压、承压-无压完整井稳定流解析表达式。基于此,将其应用于基坑降水工程中,提出适用于古河道承压含水层中基坑涌水量计算方法;最后以武汉梨园广场地下停车场深基坑工程为例进行计算分析,并将结果与传统方法计算结果和实际监测数据分别进行对比,结果显示所述计算方法所得结果与基坑实际涌水量相对误差仅为7.4%,而采用传统大井法相对误差达到54.5%,验证了所提出计算方法的合理性。研究结果对于认识古河道承压含水层地下水井流规律以及指导基坑降水设计具有重要意义。Abstract: Based on the analysis of the special hydrogeological conditions of an ancient river in Wuhan, a hydrogeological model for the ancient river is established. The problem of artesian well flow in the ancient river is generalized to that of groundwater movement to pumping wells in belt-like artesian aquifers. Then, based on the principle of mirror method and the potential function, the formulas of steady flow for artesian and artesian-unartesian completely penetrating wells in the ancient river are derived. On this basis, it is applied to the foundation pit dewatering project, and a method for calculating the water inflow of the foundation pit of artesian aquifers in the ancient river is put forward. Finally, taking the deep foundation pit of the underground parking lot of Liyuan Plaza in Wuhan as an example, the calculated results are compared with those of the traditional methods and the actual monitoring data. The results show that the relative error between the calculated results and the actual water inflow of the foundation pit is only 7.4%, while the relative error of the traditional method is 54.5%, which verifies the rationality of the proposed method. The research results are of great significance for understanding the theory of artesian well flow in ancient rivers and for guiding the design of foundation pit dewatering projects.
-
Keywords:
- ancient river /
- artesian water /
- well flow /
- completely penetrating well /
- steady flow /
- foundation pit dewatering
-
-
表 1 单井抽水试验数据表
Table 1 Data table of single-well pumping test
(m) 类别 井编号 静水位标高 水位降深 稳定水位标高 抽水井 J24 17.60 11.98 5.62 观测井 J23 17.55 4.40 13.15 J08 17.55 4.82 12.71 J25 17.60 4.26 13.34 J26 17.60 2.12 15.48 表 2 渗透系数计算表
Table 2 Calculation of permeability coefficient
井号 Q/(m3·d-1) r/m s/m a/m l/m M/m x y K/(m·d-1) J24 1080 0.125 11.98 100 1000 35.4 105 0 — J23 — 21.227 4.4 — — — 112 21 3.41 J08 — 19.357 4.82 — — — 101 16 3.11 J25 — 25.621 4.26 — — — 111 26 3.51 J26 — 48.941 2.12 — — — 112 49 4.90 均值 — 3.48 表 3 基坑涌水量计算表
Table 3 Calculation of water inflow of foundation pit
方法 K/(m·d-1) M/m H0/m h/m R/m r0/m A/m l/m Q/(m3·d-1) 本文计算方法 3.48 35.4 43.8 31.05 223 81 100 1000 4898.2 传统大井法 3.31 35.4 43.8 31.05 218 81 100 1000 7044.7 -
[1] 范士凯, 杨育文. 长江一级阶地基坑地下水控制方法和实践[J]. 岩土工程学报, 2010, 32(增刊1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1013.htm FAN Shi-kai, YANG Yu-wen. Groundwater control and practice of deep foundation pits in terrace along Yangtze River[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1013.htm
[2] 徐杨青, 朱小敏. 长江中下游一级阶地地层结构特征及深基坑变形破坏模式分析[J]. 岩土工程学报, 2006, 28(增刊1): 1794-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1109.htm XU Yang-qing, ZHU Xiao-min. Structural characteristics of the first terrace strata in the middle and lower reaches of the Yangtze River and analysis of deformation and failure modes of deep foundation pits[J]. Journal of Geotechnical Engineering, 2006, 28(S1): 1794-1798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1109.htm
[3] 蔡娇娇, 冯晓腊, 李滕龙, 等. 武汉一级阶地基坑降水引起土层水位变化及压缩变形研究[J]. 水文地质工程地质, 2018, 45(2): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201802014.htm CAI Jiao-jiao, FENG Xiao-la, LI Teng-long, et al. Study on the variation of soil water level and compression deformation caused by dewatering of first-order foundation pits in Wuhan[J]. Hydrogeology, Engineering Geology, 2018, 45(2): 90-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201802014.htm
[4] 马郧, 徐光黎, 刘佑祥. 长江I级阶地某深基坑地下水控制分析[J]. 安全与环境工程, 2012, 19(5): 144-149. doi: 10.3969/j.issn.1671-1556.2012.05.036 MA Yun, XU Guang-li, LIU You-xiang. Groundwater control analysis of a deep foundation pit in Grade I terrace of the Yangtze River[J]. Safety and Environmental Engineering, 2012, 19(5): 144-149. (in Chinese) doi: 10.3969/j.issn.1671-1556.2012.05.036
[5] 童立元, 郑灿政, 张明飞, 等. 地铁车站止水帷幕对南京秦淮河古河道地下水流场的影响分析[J]. 东南大学学报(自然科学版), 2016, 46(增刊1): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1034.htm TONG Li-yuan, ZHENG Can-zheng, ZHANG Ming-fei, et al. Analysis of the influence of water stop curtain on the groundwater flow field of the ancient Qinhuai River in Nanjing[J]. Journal of Southeast University (Natural Science Edition), 2016, 43(S1): 190-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1034.htm
[6] 徐耀德, 童利红. 利用Modflow预测某基坑降水引起的地面沉降[J]. 水文地质工程地质, 2004(6): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200406022.htm XU Yao-de, TONG Li-hong. Prediction of land subsidence caused by dewatering of a foundation pit by Modflow[J]. Hydrogeology and Engineering Geology, 2004(6): 96-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200406022.htm
[7] TAN C C, TUNG C P, TSAI T C. Applying zonation methods and tabu search to improve the ground-water modeling[J]. Journal of the American Water Resources Association, 2008, 44(1): 107-120.
[8] 尹盛斌, 丁红岩. 软土基坑开挖引起的坑外地表沉降预测数值分析[J]. 岩土力学, 2012(4): 1210-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201204038.htm YIN Sheng-bin, DING Hong-yan. Numerical analysis of estimation of ground surface settlement outside pit induced by soft-soil excavation[J]. Geotechnical Mechanics, 2012(4): 1210-1216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201204038.htm
[9] 建筑基坑支护技术规程:JGJ120—2012[M]. 2012. Technical Regulations for Foundation Pit Support of Buildings: JGJ120—2012[M]. 2012. (in Chinese)
[10] SEDGHI M M, SAMANI N. Three-dimensional semi- analytical solutions of groundwater flow to a well in fractured wedge-shaped aquifers[J]. Journal of Hydrologic Engineering, 2010, 15(12): 974-984.
[11] WANG L, DAI C, XUE L. A semianalytical model for pumping tests in finite heterogeneous confined aquifers with arbitrarily shaped boundary[J]. Water Resources Research, 2018, 54(4): 3207-3216.
[12] ZAREI D S, SAMANI N. Capture zone of a multi-well system in bounded peninsula-shaped aquifers[J]. Journal of Contaminant Hydrology, 2014, 164: 114-124.
[13] CHUANG M H, YEH H D. An analytical solution of groundwater flow in wedge-shaped aquifers with estuarine boundary conditions[J]. Water Resources Management, 2018, 32(15): 5027-5039.
[14] 邓健如, 伍维周. 长江武汉河段的形成和贯通时间[J]. 湖北大学学报(自科版), 1992(4): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZK199204023.htm DENG Jian-ru, WU Wei-zhou. Formation and running-through time of Wuhan Reach of Yangtze River[J]. Journal of Hubei University (Self-Science Edition), 1992(4): 414-418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDZK199204023.htm
[15] 李英, 何忠泽, 严桂华, 等. 武汉二元结构地层基坑降水及其地面沉降研究[J]. 岩土工程学报, 2012, 34(增刊1): 767-772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1149.htm LI Ying, HE Zhong-ze, YAN Gui-hua, et al. Study on dewatering and land subsidence of foundation pit in dualistic structure stratum[J]. Journal of Geotechnical Engineering, 2012, 34(S1): 767-772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1149.htm
[16] 陈崇希, 林敏. 地下水动力学[M]. 5版.北京: 地质出版社, 2011. CHEN Chong-xi, LIN Min. Groundwater Dynamics[M]. 5th ed. Beijing: Geological Press, 2011. (in Chinese)
[17] CHEN C, HU L, WANG X. Analysis of steady ground water flow toward wells in a confined‐unconfined aquifer[J]. Groundwater, 2010, 44(4): 609-612.
[18] 刘国彬, 王卫东. 基坑工程手册[M]. 北京: 中国建筑工业出版社, 2009. LIU Guo-bin, WANG Wei-dong. Manual of Foundation Pit[M]. Beijing: China Architecture Building Press, 2009. (in Chinese)
-
期刊类型引用(0)
其他类型引用(1)