• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

武汉古河道承压水井流理论及在基坑降水中应用

吕斌泉, 冯晓腊, 熊宗海

吕斌泉, 冯晓腊, 熊宗海. 武汉古河道承压水井流理论及在基坑降水中应用[J]. 岩土工程学报, 2020, 42(3): 533-541. DOI: 10.11779/CJGE202003015
引用本文: 吕斌泉, 冯晓腊, 熊宗海. 武汉古河道承压水井流理论及在基坑降水中应用[J]. 岩土工程学报, 2020, 42(3): 533-541. DOI: 10.11779/CJGE202003015
LÜ Bin-quan, FENG Xiao-la, XIONG Zong-hai. Theory of artesian well flow in ancient river in Wuhan and its application in foundation pit dewatering[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 533-541. DOI: 10.11779/CJGE202003015
Citation: LÜ Bin-quan, FENG Xiao-la, XIONG Zong-hai. Theory of artesian well flow in ancient river in Wuhan and its application in foundation pit dewatering[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 533-541. DOI: 10.11779/CJGE202003015

武汉古河道承压水井流理论及在基坑降水中应用  English Version

基金项目: 

国家自然科学基金项目 41702336

武汉市政建设集团科技计划项目 wszky201820

详细信息
    作者简介:

    吕斌泉(1994— ),男,硕士,主要从事岩土体稳定性、地下水渗流等方面研究。E-mail:cuglvbinquan@163.com

    通讯作者:

    冯晓腊, E-mail:fengdafxl@126.com

  • 中图分类号: TU46.3

Theory of artesian well flow in ancient river in Wuhan and its application in foundation pit dewatering

  • 摘要: 在分析武汉市古河道特殊水文地质条件的基础上,建立古河道水文地质模型,将古河道承压水井流问题概化为带状承压含水层中地下水向抽水井的运动问题;然后结合镜像法原理,引入吉林斯基势函数,推导出古河道承压、承压-无压完整井稳定流解析表达式。基于此,将其应用于基坑降水工程中,提出适用于古河道承压含水层中基坑涌水量计算方法;最后以武汉梨园广场地下停车场深基坑工程为例进行计算分析,并将结果与传统方法计算结果和实际监测数据分别进行对比,结果显示所述计算方法所得结果与基坑实际涌水量相对误差仅为7.4%,而采用传统大井法相对误差达到54.5%,验证了所提出计算方法的合理性。研究结果对于认识古河道承压含水层地下水井流规律以及指导基坑降水设计具有重要意义。
    Abstract: Based on the analysis of the special hydrogeological conditions of an ancient river in Wuhan, a hydrogeological model for the ancient river is established. The problem of artesian well flow in the ancient river is generalized to that of groundwater movement to pumping wells in belt-like artesian aquifers. Then, based on the principle of mirror method and the potential function, the formulas of steady flow for artesian and artesian-unartesian completely penetrating wells in the ancient river are derived. On this basis, it is applied to the foundation pit dewatering project, and a method for calculating the water inflow of the foundation pit of artesian aquifers in the ancient river is put forward. Finally, taking the deep foundation pit of the underground parking lot of Liyuan Plaza in Wuhan as an example, the calculated results are compared with those of the traditional methods and the actual monitoring data. The results show that the relative error between the calculated results and the actual water inflow of the foundation pit is only 7.4%, while the relative error of the traditional method is 54.5%, which verifies the rationality of the proposed method. The research results are of great significance for understanding the theory of artesian well flow in ancient rivers and for guiding the design of foundation pit dewatering projects.
  • 图  1   武汉市古河道平面分布示意图

    Figure  1.   Plane distribution map of an ancient river in Wuhan

    图  2   汉阳段古河道地层剖面图

    Figure  2.   Stratigraphic profile of ancient river in Hanyang

    图  3   武汉古河道纵向厚度变化示意图

    Figure  3.   Schematic of change of longitudinal thickness of the ancient river in Wuhan

    图  4   古河道承压含水层水位变化示意图

    Figure  4.   Schematic chart of change of water level of artesian aquifer in the ancient river

    图  5   古河道承压含水层水文地质模型

    Figure  5.   Hydrogeological model for artesian aquifer in ancient river

    图  6   古河道承压含水层抽水井的镜像投影

    Figure  6.   Mirror projection of pumping well of artesian aquifer in the ancient river

    图  7   古河道含水层抽水井降水漏斗

    Figure  7.   Precipitation funnel of pumping well of artesian aquifer in the ancient river

    图  8   梨园广场停车场地层剖面图

    Figure  8.   Stratigraphic profile of underground parking lot of Liyuan Plaza

    图  9   井位布置图

    Figure  9.   Layout of wells

    图  10   单井抽水试验s-t

    Figure  10.   s-t diagram of single-well pumping tests

    图  11   单井抽水试验Q-t

    Figure  11.   Q-t diagram of single-well pumping test

    表  1   单井抽水试验数据表

    Table  1   Data table of single-well pumping test  (m)

    类别井编号静水位标高水位降深稳定水位标高
    抽水井J2417.6011.985.62
    观测井J2317.554.4013.15
    J0817.554.8212.71
    J2517.604.2613.34
    J2617.602.1215.48
    下载: 导出CSV

    表  2   渗透系数计算表

    Table  2   Calculation of permeability coefficient

    井号Q/(m3·d-1)r/ms/ma/ml/mM/mxyK/(m·d-1)
    J2410800.12511.98100100035.41050
    J2321.2274.4112213.41
    J0819.3574.82101163.11
    J2525.6214.26111263.51
    J2648.9412.12112494.90
    均值3.48
    下载: 导出CSV

    表  3   基坑涌水量计算表

    Table  3   Calculation of water inflow of foundation pit

    方法K/(m·d-1)M/mH0/mh/mR/mr0/mA/ml/mQ/(m3·d-1)
    本文计算方法3.4835.443.831.052238110010004898.2
    传统大井法3.3135.443.831.052188110010007044.7
    下载: 导出CSV
  • [1] 范士凯, 杨育文. 长江一级阶地基坑地下水控制方法和实践[J]. 岩土工程学报, 2010, 32(增刊1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1013.htm

    FAN Shi-kai, YANG Yu-wen. Groundwater control and practice of deep foundation pits in terrace along Yangtze River[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1013.htm

    [2] 徐杨青, 朱小敏. 长江中下游一级阶地地层结构特征及深基坑变形破坏模式分析[J]. 岩土工程学报, 2006, 28(增刊1): 1794-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1109.htm

    XU Yang-qing, ZHU Xiao-min. Structural characteristics of the first terrace strata in the middle and lower reaches of the Yangtze River and analysis of deformation and failure modes of deep foundation pits[J]. Journal of Geotechnical Engineering, 2006, 28(S1): 1794-1798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2006S1109.htm

    [3] 蔡娇娇, 冯晓腊, 李滕龙, 等. 武汉一级阶地基坑降水引起土层水位变化及压缩变形研究[J]. 水文地质工程地质, 2018, 45(2): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201802014.htm

    CAI Jiao-jiao, FENG Xiao-la, LI Teng-long, et al. Study on the variation of soil water level and compression deformation caused by dewatering of first-order foundation pits in Wuhan[J]. Hydrogeology, Engineering Geology, 2018, 45(2): 90-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201802014.htm

    [4] 马郧, 徐光黎, 刘佑祥. 长江I级阶地某深基坑地下水控制分析[J]. 安全与环境工程, 2012, 19(5): 144-149. doi: 10.3969/j.issn.1671-1556.2012.05.036

    MA Yun, XU Guang-li, LIU You-xiang. Groundwater control analysis of a deep foundation pit in Grade I terrace of the Yangtze River[J]. Safety and Environmental Engineering, 2012, 19(5): 144-149. (in Chinese) doi: 10.3969/j.issn.1671-1556.2012.05.036

    [5] 童立元, 郑灿政, 张明飞, 等. 地铁车站止水帷幕对南京秦淮河古河道地下水流场的影响分析[J]. 东南大学学报(自然科学版), 2016, 46(增刊1): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1034.htm

    TONG Li-yuan, ZHENG Can-zheng, ZHANG Ming-fei, et al. Analysis of the influence of water stop curtain on the groundwater flow field of the ancient Qinhuai River in Nanjing[J]. Journal of Southeast University (Natural Science Edition), 2016, 43(S1): 190-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1034.htm

    [6] 徐耀德, 童利红. 利用Modflow预测某基坑降水引起的地面沉降[J]. 水文地质工程地质, 2004(6): 96-98. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200406022.htm

    XU Yao-de, TONG Li-hong. Prediction of land subsidence caused by dewatering of a foundation pit by Modflow[J]. Hydrogeology and Engineering Geology, 2004(6): 96-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200406022.htm

    [7]

    TAN C C, TUNG C P, TSAI T C. Applying zonation methods and tabu search to improve the ground-water modeling[J]. Journal of the American Water Resources Association, 2008, 44(1): 107-120.

    [8] 尹盛斌, 丁红岩. 软土基坑开挖引起的坑外地表沉降预测数值分析[J]. 岩土力学, 2012(4): 1210-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201204038.htm

    YIN Sheng-bin, DING Hong-yan. Numerical analysis of estimation of ground surface settlement outside pit induced by soft-soil excavation[J]. Geotechnical Mechanics, 2012(4): 1210-1216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201204038.htm

    [9] 建筑基坑支护技术规程:JGJ120—2012[M]. 2012.

    Technical Regulations for Foundation Pit Support of Buildings: JGJ120—2012[M]. 2012. (in Chinese)

    [10]

    SEDGHI M M, SAMANI N. Three-dimensional semi- analytical solutions of groundwater flow to a well in fractured wedge-shaped aquifers[J]. Journal of Hydrologic Engineering, 2010, 15(12): 974-984.

    [11]

    WANG L, DAI C, XUE L. A semianalytical model for pumping tests in finite heterogeneous confined aquifers with arbitrarily shaped boundary[J]. Water Resources Research, 2018, 54(4): 3207-3216.

    [12]

    ZAREI D S, SAMANI N. Capture zone of a multi-well system in bounded peninsula-shaped aquifers[J]. Journal of Contaminant Hydrology, 2014, 164: 114-124.

    [13]

    CHUANG M H, YEH H D. An analytical solution of groundwater flow in wedge-shaped aquifers with estuarine boundary conditions[J]. Water Resources Management, 2018, 32(15): 5027-5039.

    [14] 邓健如, 伍维周. 长江武汉河段的形成和贯通时间[J]. 湖北大学学报(自科版), 1992(4): 414-418. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZK199204023.htm

    DENG Jian-ru, WU Wei-zhou. Formation and running-through time of Wuhan Reach of Yangtze River[J]. Journal of Hubei University (Self-Science Edition), 1992(4): 414-418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDZK199204023.htm

    [15] 李英, 何忠泽, 严桂华, 等. 武汉二元结构地层基坑降水及其地面沉降研究[J]. 岩土工程学报, 2012, 34(增刊1): 767-772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1149.htm

    LI Ying, HE Zhong-ze, YAN Gui-hua, et al. Study on dewatering and land subsidence of foundation pit in dualistic structure stratum[J]. Journal of Geotechnical Engineering, 2012, 34(S1): 767-772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1149.htm

    [16] 陈崇希, 林敏. 地下水动力学[M]. 5版.北京: 地质出版社, 2011.

    CHEN Chong-xi, LIN Min. Groundwater Dynamics[M]. 5th ed. Beijing: Geological Press, 2011. (in Chinese)

    [17]

    CHEN C, HU L, WANG X. Analysis of steady ground water flow toward wells in a confined‐unconfined aquifer[J]. Groundwater, 2010, 44(4): 609-612.

    [18] 刘国彬, 王卫东. 基坑工程手册[M]. 北京: 中国建筑工业出版社, 2009.

    LIU Guo-bin, WANG Wei-dong. Manual of Foundation Pit[M]. Beijing: China Architecture Building Press, 2009. (in Chinese)

  • 期刊类型引用(0)

    其他类型引用(1)

图(11)  /  表(3)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  18
  • PDF下载量:  243
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-06-04
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回