Fracture test and analysis of horizontal fissure rock-like specimens influenced by apertures
-
摘要: 为探究张开度影响的水平裂隙岩体破断机理,利用水泥砂浆制备不同张开度水平单裂隙类岩体试件,基于RMT-150B岩石力学试验机对制备的类岩体试件进行单轴加载试验。结果表明:同一预制裂隙长度下,随着裂隙张开度的减小,微裂纹萌生位置由预制裂隙中部向尖端转移。为验证此现象,基于PFC数值仿真平台的平行黏结接触单元构建了裂隙体数值模型进行分析,在数值计算边界条件与试验测试环境相一致的条件下,得到了与试验测试结果相一致的微裂纹起裂模式与破断特征。为进一步探究水平裂隙岩体微裂纹起裂扩展机制,结合微裂纹起裂扩展过程中数值模型颗粒位移场演化规律,基于裂纹面变形屈服特征,提出了固支梁简化计算力学模型,对不同张开度下水平裂隙岩体出现的微裂纹起裂扩展机制进行了分析和阐释。Abstract: In order to explore the fracture mechanism of horizontal fissure rock mass with different apertures, single-fissure rock mass specimens with different apertures are prepared by using cement mortar. The uniaxial loading tests are carried out on the prepared rock mass specimens based on the RMT-150B rock mechanics testing machine. The results show that under the same length of prefabricated fissure, with the decrease of fissure apertures, the initiation position of microcracks shifts from the middle of prefabricated fissure to the tip. To verify this phenomenon, a parallel bonded contact element based on PFC numerical simulation platform is used to establish a numerical model for fissure body for analysis. Under that condition, the boundary conditions of numerical calculation are consistent with the test environment, the crack initiation modes and fracture characteristics which are consistent with the test results are obtained. In order to further explore the initiation and propagation mechanism of micro-cracks in horizontally fissured rock mass, based on the yield characteristics of crack surface deformation, the evolution law of particle displacement field in the numerical model of micro-crack initiation and propagation is considered, a simplified model for fixed beam is proposed, and the mechanism of micro-crack initiation and propagation in horizontally fissured rock mass with different apertures is analyzed and explained.
-
-
表 1 类岩材料物理力学参数
Table 1 Physical and mechanical parameters of rock-like materials
试件类型 密度/(kg·m-3) 单轴抗压强度/MPa 弹性模量/GPa 泊松比 抗拉强度/MPa 黏聚力/MPa 摩擦角/(°) 类岩体试件 2145 33.28 7.63 0.211 2.64 6.49 33.75 表 2 数值模型微观力学参数
Table 2 Microscopic parameters of numerical model
粒径/mm 颗粒接触模量/GPa 颗粒刚度比 颗粒摩擦系数 黏结模量/GPa 黏结刚度比 黏结摩擦系数 黏结抗拉强度/MPa 黏结内聚力/MPa 0.7~1.05 4.5 2.5 0.4 4.5 2.8 0.4 13.5±2.7 13.5±2.7 表 3 数值模拟水平裂隙试件裂纹起裂模式以及预制裂隙附近位移场状态
Table 3 Crack initiation modes and surface displacement fields of simulated prefabricated fissure
张开度 裂纹起裂模式 预制裂隙附近位移场 0.1 mm 0.2 mm 0.4 mm 0.8 mm 表 4 数值模型参数
Table 4 Parameters of numerical model
裂隙长度/mm 模型尺寸/(mm×mm) 颗粒数/个 裂隙张开度/mm 40 200×267 78780 0.2 50 250×333 123034 表 5 不同长度水平裂隙试件裂纹起裂模式以及预制裂隙附近位移场状态
Table 5 The crack initiation mode and the displacement field near the prefabricated fissure of the specimens with different lengths of horizontal fissure
张开度 裂纹起裂模式 预制裂隙附近位移场 0.2 mm 0.2 mm -
[1] CAO P, LIU T, PU C, et al. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression[J]. Engineering Geology, 2015, 187: 113-121. doi: 10.1016/j.enggeo.2014.12.010
[2] CHENG H, ZHOU X, ZHU J, et al. The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression[J]. Rock Mechanics & Rock Engineering, 2016, 49(9): 1-14.
[3] WONG L N Y. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(2): 239-249.
[4] ZHANG X P, WONG L N Y. Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach[J]. Rock Mechanics & Rock Engineering, 2012, 45(5): 711-737.
[5] 刘伟韬, 申建军. 含单裂纹真实岩石试件断裂模式的力学试验研究[J]. 岩石力学与工程学报, 2016, 35(6): 1182-1189. doi: 10.13722/j.cnki.jrme.2015.0710 LIU Wei-tao, SHEN Jian-jun. Experimental study of propagation mode of crack in real rock specimens with a single crack[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1182-1189. (in Chinese) doi: 10.13722/j.cnki.jrme.2015.0710
[6] WANG Y, TANG J, DAI Z, et al. Experimental study on mechanical properties and failure modes of low-strength rock samples containing different fissures under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 197: 1-20. doi: 10.1016/j.engfracmech.2018.04.044
[7] 王桂林, 张亮, 许明, 等. 单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究[J]. 岩土工程学报, 2019, 41(4): 639-647. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904008.htm WANG Gui-lin, ZHANG Liang, XU Ming, et al. Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 639-647. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904008.htm
[8] 胡波, 杨圣奇, 徐鹏, 等. 单裂隙砂岩蠕变模型参数时间尺度效应及颗粒流数值模拟研究[J]. 岩土工程学报, 2019, 41(5): 864-873. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905011.htm HU Bo, YANG Sheng-qi, XU Peng, et al. Time-scale effect of the creep model parameters and particle flow simulation of sandstone with a single crack[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 864-873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905011.htm
[9] 王斌, 宁勇, 冯涛, 等. 单轴压缩条件下锚杆影响脆性岩体破裂的细观机制[J]. 岩土工程学报, 2018, 40(9): 1593-1600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809005.htm WANG Bin, NING Yong, FENG Tao, et al. Meso-mechanism of rock failure influenced by bolt anchorage under uniaxial compression loading[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1593-1600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809005.htm
[10] 蒋明镜, 张宁, 申志福, 等. 含裂隙岩体单轴压缩裂纹扩展机制离散元分析[J]. 岩土力学, 2015, 36(11): 3293-3301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511034.htm JIANG Ming-jing, ZHANG Ning, SHEN Zhi-fu, et al. DEM analyses of crack propagation in flawed rock mass under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36(11): 3293-3301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511034.htm
[11] 袁媛, 潘鹏志, 赵善坤, 等. 基于数字图像相关法的含填充裂隙大理岩单轴压缩破坏过程研究[J]. 岩石力学与工程学报, 2018, 37(2): 339-351. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802008.htm YUAN Yuan, PAN Peng-zhi, ZHAO Shan-kun, et al. The failure process of marble with filled crack under uniaxial compression based on digital image correlation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 339-351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802008.htm
[12] 左江江, 李臣林, 腾俊洋, 等. 充填物对含孔洞大理岩力学特性影响规律试验研究[J]. 工程科学学报, 2018, 40(7): 776-782. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807002.htm ZUO Jiang-jiang, LI Chen-lin, TENG Jun-yang, et al. Experimental study of the influence of the filling material on the mechanical properties of marble with holes[J]. Chinese Journal of Engineering, 2018, 40(7): 776-782. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807002.htm
[13] 郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的强度特征与破坏模式试验[J]. 工程科学学报, 2019, 41(1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201901004.htm GUO Qi-feng, WU Xu, CAI Mei-feng, et al. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks[J]. Chinese Journal of Engineering, 2019, 41(1): 43-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201901004.htm
[14] LIU T, LIN B, ZOU Q, et al. Mechanical behaviors and failure processes of precracked specimens under uniaxial compression: a perspective from microscopic displacement patterns[J]. Tectonophysics, 2016(672/673): 104-120.
[15] LIU T, LIN B, YANG W. Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression[J]. Tectonophysics, 2017(712/713): 330-343.
[16] JIN J, CAO P, CHEN Y, et al. Influence of single flaw on the failure process and energy mechanics of rock-like material[J]. Computers & Geotechnics, 2017, 86: 150-162.
[17] MIAO S, PAN P, WU Z, et al. Fracture analysis of sandstone with a single filled flaw under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 204: 319-343.
[18] 蒲成志, 曹平, 陈瑜, 等. 不同裂隙相对张开度下类岩石材料断裂试验与破坏机理[J]. 中南大学学报(自然科学版), 2011, 42(8): 2394-2399. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201108037.htm PU Cheng-zhi, CAO Ping, CHEN Yu, et al. Fracture test and failure mechanism of rock-like material of relatively different fracture apertures[J]. Journal of Central South University(Science and Technology), 2011, 42(8): 2394-2399. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201108037.htm
[19] ZHANG X P, ZHANG Q, WU S. Acoustic emission characteristics of the rock-like material containing a single flaw under different compressive loading rates[J]. Computers & Geotechnics, 2017, 83: 83-97.
[20] 李夕兵, 罗琳, 黎崇金. 考虑岩石交界面方向效应的巴西劈裂试验研究[J]. 工程科学学报, 2017, 39(9): 1295-1304. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201709001.htm LI Xi-bing, LUO Lin, LI Chong-jin. Experimental study of directivity effect of rock interface under Brazilian splitting[J]. Chinese Journal of Engineering, 2017, 39(9): 1295-1304. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201709001.htm
[21] YANG S Q, TIAN W L, HUANG Y H. Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code[J]. Geothermics, 2018, 72: 124-137.
[22] 岑夺丰, 黄达. 高应变率单轴压缩下岩体裂隙扩展的细观位移模式[J]. 煤炭学报, 2014, 39(3): 436-444. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403008.htm CEN Duo-feng, HUANG Da. Mesoscopic displacement modes of crack propagation of rock mass under uniaxial compression with high strain rate[J]. Journal of China Coal Society, 2014, 39(3): 436-444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201403008.htm
[23] ZHANG X P, LIU Q, WU S, et al. Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression[J]. Engineering Geology, 2015, 199: 74-90.
[24] 黄丹, 李小青. 基于微裂纹发育特性的大理岩特征强度数值模拟研究[J]. 岩土力学, 2017, 38(1): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701033.htm HUANG Dan, LI Xiao-qing. Numerical simulation research on characteristic strength of marble based on development of microcrack[J]. Rock and Soil Mechanics, 2017, 38(1): 253-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701033.htm
[25] 张科, 刘享华, 李昆, 等. 含孔多裂隙岩石力学特性与破裂分形维数相关性研究[J]. 岩石力学与工程学报, 2018, 37(12): 2785-2794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812014.htm ZHANG Ke, LIU Xiang-hua, LI Kun, et al. Investigation on correlation between mechanical characteristic and fractal dimension of fracturing of rock containing a hole and multi-flaws[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2785-2794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812014.htm
-
期刊类型引用(8)
1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 . 百度学术
2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 . 百度学术
4. 张晓明,谭蓉,贺育明,强继峰,孙森林,张朝军,梁刚. 基于时频域信号特征的输电塔运行模态分析. 电网与清洁能源. 2025(03): 46-52+59 . 百度学术
5. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 . 百度学术
6. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 . 百度学术
7. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 . 百度学术
8. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 . 百度学术
其他类型引用(7)