Measurement and mechanism of influences of rainfall on supporting structures of foundation pits in soft soils
-
摘要: 降雨通常易导致土质边坡的滑动、失稳,降雨对基坑特别是软土条件下的基坑的影响研究较少。针对天津市某基坑展开实测,开挖结束后在没有其他施工条件下,连续3 d 247 mm降雨导致基坑支护桩顶水平位移增加13.75 mm,因此研究降雨入渗诱发软土基坑变形的机理具有十分重要的意义。首先进行降雨的入渗深度及对非饱和黏土物理力学性质影响室内试验,在此基础上结合工程实测,采用Plaxis2D有限元分析软件建立二维软土基坑模型,分析了降雨对软土基坑支护结构变形的影响机理,主要对比了降雨强度、降雨时长、降雨量对基坑支护结构变形的影响,以及开挖深度、桩顶初始位移、支护形式不同对降雨的敏感程度。结果表明:降雨对软土基坑支护结构变形影响主要因素为坑外杂填土重度增加、坑内土体软化、渗流作用,降雨量是对基坑支护变形影响较大的因素;降雨产生的支护结构位移增量受支护结构初始位移影响最大,而基坑开挖深度对相同降雨条件下支护结构变形增量影响差异不大。Abstract: Rainfall is usually easy to cause sliding and instability of soil slopes. At the same time, it also has a great influence on foundation pits, especially for those in soft soils. In the absence of other construction, after three days of rainfall of 247 mm deep, the horizontal displacement of supporting structures of a foundation pit in Tianjin increases by 13.75 mm. Therefore, it is of great significance to study the mechanism of deformation induced by rainfall of foundation pits in soft soils. Firstly, the experiments on the influences of rainfall on relevant model are conducted by using Plaxis2D. The influence mechanism of rainfall on the deformation of supporting structures of the foundation pit in soft soils is analyzed. The influences of intensity, duration and amount of rainfall on the deformation of supporting structures are analyzed, and the sensitivities of the excavation depth, the initial displacement of pile top, the form of supporting structures to rainfall are studied. The main factors affecting the deformation of supporting structures are the increase of the residual soils outside the pit, the softening of the soils in the pit and the fluid-solid coupling. The amount of rainfall is a factor to have a large influence on the deformation of the supporting structures of the foundation pit. The displacement increment of the supporting structures caused by rainfall is most affected by their initial displacement, while the depth of foundation excavation has small influences on their deformation increment under the same rainfall conditions.
-
Keywords:
- rainfall /
- soft soil /
- foundation pit /
- supporting structure
-
-
表 1 测试桩桩顶水平位移增量
Table 1 Increments of horizontal displacement of test pile top
监测日期 桩顶水平位移增量/mm 日均增量/(mm·d-1) 降雨情况 7月12日 0 2.29 无降雨 7月15日 6.86 7月18日 9.44 0.86 无降雨 7月22日 23.19 3.44 降雨 7月25日 28.84 1.89 降雨 7月28日 30.94 0.70 无降雨 8月3日 38.92 1.33 降雨 表 2 降雨试验方案
Table 2 Test plans of rainfall
控制变量 降雨强度/(mm·h-1) 降雨类型 降雨持时/h 总降雨量/mm 降雨间隔时间/min 降雨次数 每次降雨量/g 降雨时长 1.25 中雨 6 7.5 5 72 4.71 1.25 中雨 12 15 5 144 4.71 1.25 中雨 24 30 5 288 4.71 降雨强度 0.4 小雨 12 4.8 5 144 1.51 1.25 中雨 12 15 5 144 4.71 2.5 大雨 12 30 5 144 9.42 降雨强度 1.25 中雨 28.8 36 5 346 4.71 2.5 大雨 14.4 36 5 173 9.42 6 暴雨 6 36 5 144 11.31 表 3 不同含水率黏土的初始物理力学性质
Table 3 Initial physical and mechanical properties of clays with different water contents
含水率w 饱和度Sr 重度/(kN·m-3) w P/% w L/% I P I L 固结快剪 压缩模量Es/MPa 黏聚力/kPa 内摩擦角/(°) 25% 70.1% 17.3 27.8 46.5 18.7 0.67 22.91 17.70 8.2 30% 84.1% 17.9 13.86 14.61 6.9 35% 98.0% 18.6 11.84 12.52 4.3 表 4 不同降雨方案下不同土柱积水、入渗深度
Table 4 Water accumulations and infiltration depths of different soil columns under different rainfall schemes
降雨强度/(mm·h-1) 降雨 类型 降雨时长/h 降雨量/mm 积水深度/mm 入渗深度/cm 土柱Ⅰ 土柱Ⅱ 土柱Ⅲ 土柱Ⅰ 土柱Ⅱ 土柱Ⅲ 1.25 中雨 6 7.50 0 0 6.48 5 10 0 1.25 中雨 12 15.00 0 0 12.96 10 20 0 1.25 中雨 24 30.00 0 0 25.92 20 40 0 0.40 小雨 12 4.80 0 0 2.76 5 10 0 2.50 大雨 12 30.00 0 1.20 27.96 10 20 0 1.25 中雨 28.8 36.00 0 0 31.10 20 40 0 2.50 大雨 14.4 36.00 0 1.44 33.55 20 40 0 6.00 暴雨 6 36.00 0 21.60 34.98 20 20 0 表 5 土柱入渗深度范围内土体物理力学参数改变
Table 5 Change of physical and mechanical parameters of soil in soils column infiltration depth
初始饱和度Sr 重度 /(kN·m-3) 黏聚力c/kPa 内摩擦角φ/(°) 压缩模量Es/MPa 降雨前 降雨后 增幅 降雨前 降雨后 减幅 降雨前 降雨后 减幅 降雨前 降雨后 减幅 70% 17.3 18.7 7.5% 22.91 11.79 50% 17.7 12.46 30% 8.2 4.2 48% 84% 17.9 18.6 3.9% 13.86 11.65 15% 14.61 12.45 14% 6.9 4.3 38% 98% 18.6 18.7 0.5% 11.84 11.62 1.9% 12.52 12.51 0.1% 4.3 4.2 2.3% 表 6 土体计算物理力学指标
Table 6 Computational physical and mechanical indexes of soil
层号 土层厚度/m 重度/(kN·m-3) /(N·mm-2) /(N·mm-2) /(N·mm-2) /(N·mm-2) 黏聚力c/kPa 内摩擦角/(°) KH/(m·d-1) Kv/(m·d-1) ①1杂填土 0.72 16.00 2.0 2.0 16.0 48 8 10 8.64 10-1 8.64 10-1 ①2素填土 0.70 18.88 3.5 3.5 28.0 84 20 8 8.64 10-4 8.64 10-5 ③1黏土 3.48 18.61 4.2 4.2 33.6 100 16.45 12.52 8.64 10-5 8.64 10-5 ③3淤泥质黏土 5.10 18.30 3.0 3.0 24.0 72 9 10.5 8.64 10-5 6.70 10-5 ⑥1粉质黏土 10 19.24 6.0 6.0 36.0 90 15 21.19 3.71 10-3 2.78 10-4 表 7 淤泥质黏土饱和/非饱和土体参数
Table 7 Parameters of silt clay saturated/unsaturated soils
饱和度Sr 土层厚度/m 重度/(kN·m-3) /(N·mm-2) /(N·mm-2) /(N·mm-2) /(N·mm-2) 黏聚力/kPa 内摩擦角/(°) 80% 1.0 17.3 5.2 5.2 41.6 124.8 13.5 12.62 100% 1.0 18.2 3.0 3.0 24.0 72.0 9.0 10.50 表 8 不同积水工况桩顶水平位移
Table 8 Horizontal displacements of pile top under different water accumulation conditions
积水工况 桩顶水平位移/mm 桩顶水平位移增量/mm 桩顶水平位移增幅/% 工况1 39.85 6.17 18 工况2 33.64 -0.04 0 工况3 37.42 3.73 11 表 9 不同降雨时长导致桩身位移及内力变化
Table 9 Variation of pile displacement and internal force during heavy rainfall intensity with different rainfall durations
降雨时长/h 桩顶水平位移 桩身最大弯矩 降雨前/mm 增量/mm 增幅/% 降雨前/(kN·m) 增量/(kN·m) 增幅/% 0 40.48 0 0 173.4 0 0 12 45.47 5.00 12 186.8 13.4 8 24 49.79 9.31 23 203.0 29.6 16 48 56.64 16.16 40 229.4 56.0 28 72 62.88 22.40 55 254.0 80.6 35 表 10 不同降雨量及降雨强度计算条件
Table 10 Calculation conditions for different rainfall amounts and intensities
降雨量/mm 降雨类型 降雨强度/(mm·h-1) 降雨时长/h 坑内土体软化深度/cm 坑外均布荷载/(kN·m-1) 50 小雨 1.25 40 30 0.5 大雨 2.50 20 30 暴雨 6.00 8.3 25 大暴雨 10.00 5 15 100 小雨 1.25 80 65 1.0 大雨 2.50 40 65 暴雨 6.00 16.7 50 大暴雨 10.00 10 30 200 小雨 1.25 160 100 2.0 大雨 2.50 80 100 暴雨 6.00 33.3 100 大暴雨 10.00 20 60 300 小雨 1.25 240 100 3.0 大雨 2.50 120 100 暴雨 6.00 50 100 大暴雨 10.00 30 90 -
[1] 张华庆, 谭佳佳, 左殿军. 降雨入渗对软土岸坡稳定性影响研究[J]. 水运工程, 2014(4): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201404034.htm ZHANG Hua-qing, TAN Jia-jia, ZUO Dian-jun. Stability study of unsaturated soft soil slopes under rainfall infiltration[J]. Port and Waterway Engineering, 2014(4): 148-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201404034.htm
[2] 李振嵩. 降雨条件下非饱和土边坡的稳定性分析[D]. 广州: 中山大学, 2007. LI Zhen-song. Stability Analysis of Unsaturated Soil Slopes Under the Conditions of Rainfall[D]. Guangzhou: Sun Yat-Sen University, 2007. (in Chinese)
[3] 孔郁斐, 周梦佳, 宋二祥, 等. 利用PLAXIS软件计算考虑降雨的边坡稳定性[J]. 水利水运工程学报, 2014(3): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201403011.htm KONG Yu-wen, ZHOU Meng-jia, KONG Er-xiang, et al. Caculation of the slope using Plaxis software under the conditions of rainfall[J]. Hydro-Science and Engineering, 2014(3): 70-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201403011.htm
[4] 刘子振. 持续降雨入渗非饱和黏土边坡失稳机理及其应用研究[D]. 兰州: 兰州大学, 2014. LIU Zi-zhen. Instability Mechanism and Application Analysis of Partially Saturated Clay Slope Under Sustained Rainfall Infiltration[D]. Lanzhou: Lanzhou University, 2014. (in Chinese)
[5] 石振明, 沈丹祎, 彭铭, 等. 考虑多层非饱和土降雨入渗的边坡稳定性分析[J]. 水利学报, 2016, 47(8): 977-985. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201608002.htm SHI Zhen-ming, SHEN Dan-yi, PENG Ming, et al. Slope stability analysis by considering rainfall infiltration in multi-layered unsaturated soils[J]. Journal of Hydraulic Engineering, 2016, 47(8): 977-985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201608002.htm
[6] 王玉军. 降雨入渗对黏土边坡的影响分析[D]. 成都: 西南石油大学, 2016. WANG Yu-jun. Stability Analysis of Clay Slope Under Rainfall Infiltration[D]. Chengdu: Southwest Petroleum University, 2016. (in Chinese)
[7] 徐全, 谭晓慧, 沈梦芬. 降雨入渗条件下土质边坡的稳定性分析[J]. 岩土工程学报, 2012, 34(增刊): 254-259. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1053.htm XU Quan, TAN Xiao-hui, SHEN Meng-fen. Stability analysis of soil slopes under rainfall infiltration[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S0): 254-259. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1053.htm
[8] 彭立新. 降雨入渗对地铁基坑边坡变形影响分析[D]. 武汉: 华中科技大学, 2011. PENG Li-xin. Analysis of Rainfall Infiltration on Deformation of Subway Excavation Slope[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)
[9] 李炎隆, 陈波, 马成成, 等. 基于ABAQUS的降雨入渗条件下基坑边坡稳定性分析[J]. 应用力学学报, 2017, 34(1): 155-161. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201701026.htm LI Yan-long, CHEN Bo, MA Cheng-cheng, et al. Analysis of excavation slope under rainfall infiltration basing on ABAQUS[J]. Chinese Journal of Applied Mechanics, 2017, 34(1): 155-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201701026.htm
[10] 邱海兵. 降雨入渗对非饱和土基坑围护结构稳定性影响的研究[D]. 西安: 西安建筑科技大学, 2013. QIU Hai-bing. Study of rain infiltration on stability of unsaturated pit supporting structure[D]. Xi'an: Xi'an University of Architecture and Technology, 2013. (in Chinese)
[11] 崔凤展. 强降雨作用下土质深基坑稳定性及其控制技术研究[D]. 北京: 中国矿业大学(北京), 2016. CUI Feng-zhan. Study on the Stability and Controlling Technology of Soil Deep Foundation Pit under Strong Rainfall[D]. Beijing: China University of Mining & Technology, 2016. (in Chinese)
[12] 周根郯. 成都膨胀土基坑边坡降雨条件与支护结构内力关系的数值模拟研究[D]. 成都: 西南交通大学, 2016. ZHOU Gen-tan. The Numerical Emulation Study on the Relationship between the Rainfall Conditions and the Internal Force of Retaining Structure of Expansive Soil Foundation Pit in Chengdu[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
[13] MORGENSTERN N R, PRICE V. The analysis of the stability general slip surface[J]. Géotechnique, 1965, 15(1): 79-93.
[14] 覃小华, 刘东升, 宋强辉, 等. 降雨条件下一维土柱垂直入渗模型试验研究及其渗透系数求解[J]. 岩石力学与工程学报, 2017, 36(2): 475-484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702019.htm QIN Xiao-hua, LIU Dong-sheng, SONG Qiang-hui, et al. Experimental study on one-dimensional vertical infiltration in soil column under rainfall and the derivation of permeability coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 475-484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702019.htm
[15] 陈文苏. 软土蠕变沉降的数值模拟[D]. 天津: 天津大学, 2004. CHEN Wen-su. Numerical Simulation of Creep Settlement of Soft Soil[D]. Tianjin: Tianjin University, 2004. (in Chinese)
[16] FREDLUND D G. Appropriate concepts and technology for unsaturated soils[J]. Candan Geotechnique Journal, 1979, 16: 121-129.
[17] GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements[J]. Géotechnique, 1999, 3(49): 387-403.
-
期刊类型引用(29)
1. 孙厚振,张旭,刘秀杰. 基坑开挖诱发粉质黏土蠕变沉降的变形分析. 科技创新与应用. 2025(08): 104-108 . 百度学术
2. 叶帅华,唐宁,李京榜. 降雨入渗条件下框架锚杆支护边坡稳定性与变形分析. 地基处理. 2024(01): 77-89 . 百度学术
3. 黄伟豪. 基于监测数据的广州软土基坑深层水平位移分析. 四川建材. 2024(03): 69-71+74 . 百度学术
4. 田瑞端,肖见航,王晓睿. 特大暴雨引起的深基坑变形分析及降水处理. 水利与建筑工程学报. 2024(05): 38-45 . 百度学术
5. 赵军. 砂土地层深基坑施工影响邻近既有管廊变形预测. 路基工程. 2024(06): 221-225 . 百度学术
6. 王棣,田大浪. 含裂隙岩质深基坑桩锚支护结构变形特征研究. 岩土工程技术. 2023(02): 238-246 . 百度学术
7. 秦玉婷. 软土地区地铁车站基坑支护结构变形研究. 广东水利电力职业技术学院学报. 2023(02): 36-39 . 百度学术
8. 董连成,王志,金圣豪. 基于一维土柱试验的降雨入渗规律研究. 低温建筑技术. 2023(03): 105-108+113 . 百度学术
9. 田月峰. 基于横向位移控制的斜坡桥梁桩基加固方案分析. 高速铁路技术. 2023(03): 48-54 . 百度学术
10. 侯超虎. 某深基坑支护结构风险预警诱因分析. 江西建材. 2023(04): 97-99 . 百度学术
11. 付鹏,石希,沈杰超,陈韵. 强降雨对粉质黏土地区基坑围护结构变形影响的研究. 建筑结构. 2023(S1): 2898-2901 . 百度学术
12. 褚东升,代文超,占宇飞,詹刚毅,石钰锋,陈焕然. 降雨影响下紧邻桥梁软土基坑围护结构受力变形研究. 科学技术与工程. 2023(24): 10479-10486 . 百度学术
13. 阙云,邱婷,蔡沛辰,马宏岩,谢秀栋,薛斌. 基于QSGS法3D重构土体渗流场的LBM数值模拟. 湖南大学学报(自然科学版). 2023(09): 119-130 . 百度学术
14. 白柱. 开挖荷载作用下深基坑施工环境影响及控制研究. 江西建材. 2023(08): 185-186+189 . 百度学术
15. 张治国,毛敏东,王卫东,PAN Y T,吴钟腾. 降雨影响下基坑开挖施工对邻近基桩变形响应分析. 岩土力学. 2023(S1): 27-49 . 百度学术
16. 王鹏,任鹏,张华,唐印,张子东. 基于h型双排桩支护结构的黏土基坑大变形机理研究. 四川建筑科学研究. 2022(03): 54-62+78 . 百度学术
17. 曾英俊. 极端降雨下轨道交通车站深基坑安全分析与控制. 中国市政工程. 2022(03): 103-107+143-144 . 百度学术
18. 李向阳,傅林峰,姚鑫林,应胜一. 暴雨天气下超大深基坑抢险施工技术措施. 建筑结构. 2022(S1): 3087-3090 . 百度学术
19. 倪小东,王琛,唐栋华,陆江发,王晓远,陈万春. 软土地区深基坑超大变形预警及诱因分析. 中南大学学报(自然科学版). 2022(06): 2245-2254 . 百度学术
20. 贾建彬. 富水砂砾层深基坑围护结构方案比选与实施. 铁道建筑技术. 2022(07): 157-162 . 百度学术
21. 张小倩,李明广,陈锦剑,林立华. 降雨对非饱和残积土中基坑受力变形影响的机理研究. 工程地质学报. 2022(04): 1266-1274 . 百度学术
22. 陈柏灿. 岩土工程勘察对基坑支护施工的影响. 江西建材. 2022(10): 136-137+140 . 百度学术
23. 赵平. 深基坑开挖影响的有限元模拟与监测. 安庆师范大学学报(自然科学版). 2022(04): 24-28+36 . 百度学术
24. 施鑫,荣传新,王厚良,崔林钊. 地铁换乘站坑中坑支护方案优化分析. 建筑结构. 2022(S2): 2345-2350 . 百度学术
25. 张治国,张洋彬,张孟喜,赵其华,马伟斌. 考虑降雨因素影响的隧道施工扰动地层响应分析. 岩土工程学报. 2021(06): 1097-1108 . 本站查看
26. 郭海轮,谢卫兵. 超40 m深基坑施工变形及力学性能研究. 工程质量. 2021(S1): 98-103 . 百度学术
27. 毋远召,马文礼,魏占玺,董顺德. 降雨及渗流条件下层状砂质板岩边坡变形破坏模式研究. 河北工业科技. 2020(04): 230-236 . 百度学术
28. 崔林钊,牛犇,陈勇,荣传新,施鑫. 地铁换乘站坑中坑受力变形现场监测分析. 建筑结构. 2020(S2): 726-731 . 百度学术
29. 刘海林,符晓,余永飞,崔猛. 南昌地区基坑建设现状统计分析与思考. 河南城建学院学报. 2020(06): 60-66 . 百度学术
其他类型引用(27)