• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

双仓综合管廊抗震性能模型试验研究

仉文岗, 韩亮, 陈志雄, 冯立, 丁选明, 刘汉龙

仉文岗, 韩亮, 陈志雄, 冯立, 丁选明, 刘汉龙. 双仓综合管廊抗震性能模型试验研究[J]. 岩土工程学报, 2020, 42(1): 100-108. DOI: 10.11779/CJGE202001011
引用本文: 仉文岗, 韩亮, 陈志雄, 冯立, 丁选明, 刘汉龙. 双仓综合管廊抗震性能模型试验研究[J]. 岩土工程学报, 2020, 42(1): 100-108. DOI: 10.11779/CJGE202001011
ZHANG Wen-gang, HAN Liang, CHEN Zhi-xiong, FENG Li, DING Xuan-ming, LIU Han-long. Model tests on seismic performance of double-box underground utility tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 100-108. DOI: 10.11779/CJGE202001011
Citation: ZHANG Wen-gang, HAN Liang, CHEN Zhi-xiong, FENG Li, DING Xuan-ming, LIU Han-long. Model tests on seismic performance of double-box underground utility tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 100-108. DOI: 10.11779/CJGE202001011

双仓综合管廊抗震性能模型试验研究  English Version

基金项目: 

国家自然科学基金项目 51778092

重庆市基础研究与前沿探索项目 cstc2018jcyjAX0632

重庆市研究生科研创新项目 CYS18021

重庆市留学回国人员创业创新支持计划项目 cx2017123

详细信息
    作者简介:

    仉文岗(1983— ),男,博士,教授,博士生导师,主要从事深基坑开挖与边坡稳定分析教学和科研工作。E-mail:cheungwg@126.com

    通讯作者:

    刘汉龙, E-mail:hliuhhu@163.com

  • 中图分类号: TU435

Model tests on seismic performance of double-box underground utility tunnel

  • 摘要: 利用振动台试验系统,基于模型试验相似理论开展了双仓地下管廊的抗震性能试验研究。试验中,采用1952年Taft地震波作为输入地震波,并将其输入加速度峰值调整为0.2g,0.4g,0.8g和1.2g,以考虑不同PGA(peak ground acceleration)的影响。通过分析试验数据得知,管廊侧壁最大动土压力响应沿深度呈倒立“W”形分布,振动后管廊结构与周围土体之间的土压力场发生了改变;管廊侧壁土体中最大加速度响应随输入PGA增大而增大,沿深度整体呈减小趋势,加速放大系数为0.5~1.5;从加速度时程曲线和傅里叶谱来看,管廊侧壁结构与其周边土体的加速度响应基本一致,在15~30 Hz的频段土体中的振幅稍大于结构;地震过程中,结构拐角处产生较大的弯矩响应,且随输入PGA的增大而增大。同时结合ABAQUS数值软件开展了数值模拟研究,以和模型试验结果开展对比比较,结果表明试验结果具有较高的可靠性。
    Abstract: A shaking table model test on a double-box underground utility tunnel is conducted based on the theory of similarity simulation test to investigate its seismic behavior. In this test, the Taft earthquake spectra, which are adjusted to have the peak accelerations of 0.2g, 0.4g, 0.8g and 1.2g, respectively to consider the effect of various peak ground accelerations (PGAs), are chosen as the input seismic ones. It is concluded that the maximum dynamic earth pressure has a distribution of reverse "W", and the earth pressure field changes at the end of earthquake. On the whole, the maximum acceleration response, with the amplification from 0.5 to 1.5, increases with an increasing input PGA and decreases with depth. According to the time histories of acceleration and the Fourier spectra, the structures and the surrounding soils basically have consistent acceleration response at the same depth, and the amplitude of the soils is greater than that of the structures under the frequency from 15 to 30 Hz. During the earthquake, there is a larger response of bending moment at corners of the structures, which increases with the input PGAs. At the same time, numerical simulations are carried out with ABAQUS to compare with the results obtained from shaking table tests, which suggests that the results obtained from shaking table tests are highly reliable.
  • 图  1   小型振动台试验系统

    Figure  1.   Shaking table test system

    图  2   整体试验模型

    Figure  2.   Model for whole tests

    图  3   原始Taft地震波时程曲线及其傅里叶谱

    Figure  3.   Time-histories and Fourier spectra of original acceleration of Taft earthquake spectra

    图  4   加速度计和土压力传感器布置

    Figure  4.   Arrangement of accelerometers and earthquake sensors

    图  5   应变片布置

    Figure  5.   Arrangement of strain gauges

    图  6   管廊侧壁邻近土体沿深度最大动土压力响应

    Figure  6.   Maximum dynamic earth pressure responses along depth in soils adjacent to side wall

    图  7   管廊侧壁周边土压力响应时程曲线

    Figure  7.   Time-histories of dynamic earth pressure for surrounding soils adjacent to side wall

    图  8   管廊侧壁邻近沿深度土体最大加速度响应

    Figure  8.   Maximum acceleration responses of soils adjacent to side wall along depth

    图  9   加速度放大系数在不同地震波型下沿深度的分布

    Figure  9.   Distribution of acceleration amplification of the surrounding soils adjacent to side wall along depth

    图  10   加速度放大系数分布特征

    Figure  10.   Feature of distribution of acceleration amplification

    图  11   土体和管廊结构加速度响应时程曲线与傅里叶谱对比

    Figure  11.   Comparison of time histories of acceleration and Fourier spectra between structures and surrounding soils

    图  12   地震作用下管廊结构弯矩响应

    Figure  12.   Responses of bending moment of utility tunnel structures under earthquake

    图  13   双仓地下综合管廊数值模拟网格划分模型

    Figure  13.   Meshing model for numerical simulation of double-box utility tunnel

    图  14   动剪切模量和阻尼比与动剪应变的关系曲线

    Figure  14.   Relationship among dynamic shearing modulus, damping ratio and dynamic shearing strain

    图  15   管廊侧壁邻近土体水平加速度响应

    Figure  15.   Maximum acceleration responses of soils adjacent to side wall of utility tunnel

    图  16   管廊侧壁邻近土体水平土压力响应

    Figure  16.   Responses of maximum horizontal earth pressure of soils adjacent to side wall of utility tunnel

    表  1   相似比设计

    Table  1   Design of similarity ratios

    变量计算公式相似比
    几何Sl选定1∶15
    应变Sε选定1∶1
    应力Sσ选定1∶3
    弹性模量SESE= Sσ/Sε1∶3
    加速度Sa选定5∶1
    密度SρSρ= SE/(Sl·Sa)1∶1
    时间StSt=Sl/Sa1∶8.67
    配筋按照配筋率一致
    下载: 导出CSV

    表  2   振动过程中最大动土压力与震后土压力的比较

    Table  2   Comparison between maximum dynamic earth pressure and earth pressure at end of earthquake

    测点最大动土压力响应Pdmax/Pa震后土压力Pr/Pa(Pr/Pdmax)/%
    P3P4P5P3P4P5P3P4P5
    Taft-0.2g1942906570054-29-692.773.161.21
    Taft-0.4g1942906570083104-2364.2511.494.14
    Taft-0.8g5395173626735-494209-3229.1512.071.21
    Taft-1.2g6411347226197896558261.3818.873.15
    下载: 导出CSV

    表  3   不同PGA的Taft地震波下管廊角点处弯矩值

    Table  3   Values of bending moment at corners under Taft earthquake with various PGAs  (N·m)

    测点编号0.2g0.4g0.8g1.2g
    S13-4.74-10.80-19.72-23.02
    S154.489.4615.3617.58
    S165.0211.3820.1122.89
    S18-5.52-12.15-20.72-23.59
    S19-5.71-13.14-21.19-23.83
    S215.9012.6521.4724.50
    S227.7215.9825.7128.92
    S24-8.26-17.35-27.71-30.95
    注:负号表示结构的内侧以及内隔墙的右侧受拉。
    下载: 导出CSV

    表  4   Taft地震波下管廊4个角点弯矩随PGA增大的增量

    Table  4   Incremental values of bending moment at corners with increasing PGAs under Taft earthquake  (%)

    PGAS13S15S16S18S19S21S22S24均值
    0.2g ~0.4g127.77111.17126.90120.18129.96114.55107.12110.04118.46
    0.4g ~0.8g82.6562.3276.7070.6061.3369.7360.8759.6967.99
    0.8g ~1.2g16.7514.4313.7913.8312.4514.0812.4811.6913.69
    下载: 导出CSV

    表  5   数值模拟材料参数

    Table  5   Parameters of material in numerical simulation

    材料ρ/(kg·m-3)E/MPaνc/kPaφ/(°)D
    土体174030(初始)0.3200035
    管廊2400315000.20.05
    下载: 导出CSV
  • [1]

    MILIND P D C, RANJITH P G, ZHAO J. Behavior of shallow tunnel in soft soil under seismic conditions[J]. Tunnelling and Underground Space Technology, 2018, 82: 30-38. doi: 10.1016/j.tust.2018.04.040

    [2]

    STAMOS A A, BESKOS D E. 3-D seismic response analysis of long lined tunnels in half-space[J]. Soil Dynamics and Earthquake Engineering, 1996, 15(2): 111-118. doi: 10.1016/0267-7261(95)00025-9

    [3]

    GIL L M, HERNANDEZ E, DE LA FUENTE P. Simplified transverse seismic analysis of buried structures[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(8): 735-740. doi: 10.1016/S0267-7261(01)00039-2

    [4]

    HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293. doi: 10.1016/S0886-7798(01)00051-7

    [5]

    TATEISHI A. A study on seismic analysis methods in the cross section of underground structures using static finite element method[J]. Structural Engineering, 2005, 22(1): 41-54. doi: 10.2208/jsceseee.22.41s

    [6]

    CHEN J, SHI X J, LI J. Shaking table test of utility tunnel under non-uniform earthquake wave excitation[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1400-1416. doi: 10.1016/j.soildyn.2010.06.014

    [7] 杜修力, 王刚, 路德春. 日本阪神地震中大开地铁车站地震破坏机理分析[J]. 防灾减灾工程学报, 2016, 36(2): 165-171. doi: 10.13409/j.cnki.jdpme.2016.02.001

    DU Xiu-li, WANG Gang, LU De-chun. Earthquake damage mechanism analysis of Dakai metro station by Kobe Earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 165-171. (in Chinese) doi: 10.13409/j.cnki.jdpme.2016.02.001

    [8]

    WANG G, YUAN M, YU M, et al. Experimental study on seismic response of underground tunnel-soil-surface structure interaction system[J]. Tunnelling Underground Space Technology, 2018, 76: 145-59. doi: 10.1016/j.tust.2018.03.015

    [9]

    YAN K, ZHANG J, WANG Z, et al. Seismic responses of deep buried pipeline under non-uniform excitations from large scale shaking table test[J]. Soil Dyn Earthq Eng, 2018, 113: 180-92. doi: 10.1016/j.soildyn.2018.05.036

    [10]

    SINGH D K, MANDAL A, KARUMANCHI S R, et al. Seismic behaviour of damaged tunnel during aftershock[J]. Engineering Failure Analysis, 2018, 93: 44-54. doi: 10.1016/j.engfailanal.2018.06.028

    [11] 胡翔, 薛伟辰. 预制预应力综合管廊受力性能试验研究[J]. 土木工程学报, 2010, 43(5): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201005008.htm

    HU Xiang, XUE Wei-chen. Experimental study of mechanical properties of PPMT[J]. China Civil Engineering Journal, 2010, 43(5): 29-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201005008.htm

    [12] 施有志, 柴建峰, 林树枝, 等. 地下综合管廊边界条件对地震动力响应影响数值分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 213-225. doi: 10.13278/j.cnki.jjuese.20160331

    SHI You-zhi, CHAI Jian-feng, LIN Shu-zhi, et al. Numerical analysis on influence of boundary conditions on seismic dynamic response of underground utility tunnels[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 213-225. (in Chinese) doi: 10.13278/j.cnki.jjuese.20160331

    [13]

    JIANG L, CHEN J, JIE L. Seismic response of underground utility tunnels: shaking table testing and FEM analysis[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(4): 555-67. doi: 10.1007/s11803-010-0037-x

    [14]

    MASON H B, TROMBETTA N W, CHEN Z, et al. Seismic soil-foundation-structure interaction observed in geotechnical centrifuge experiments[J]. Soil Dynamics and Earthquake Engineering, 2013, 48(6): 162-74.

    [15] 史晓军, 陈隽, 李杰. 非一致地震激励地下综合管廊振动台模型试验研究(Ⅰ)——试验方法[J]. 地震工程与工程振动, 2010, 30(1): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201001020.htm

    SHI Xiao-jun, CHEN Jun, LI Jie. Shaking table test on utility tunnel under non-uniform seismic excitations(Ⅰ): experimental setup[J]. Earthquake Engineering and Engineering Dynamics, 2010, 30(1): 147-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201001020.htm

    [16] 陈隽, 史晓军, 李杰. 非一致地震激励地下综合管廊振动台模型试验研究(Ⅱ)——试验结果[J]. 地震工程与工程振动, 2010, 30(2): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201002021.htm

    CHEN Jun, SHI Xiao-jun, LI Jie. Shaking table test of utility tunnel under non-uniform seismic excitations(Ⅱ): experimental results[J]. Earthquake Engineering and Engineering Dynamics, 2010, 30(2): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201002021.htm

    [17] 蒋录珍, 陈隽, 李杰. 非一致地震激励地下综合管廊振动台模型试验研究(Ⅲ)——数值模拟[J]. 地震工程与工程振动, 2010, 30(3): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201003005.htm

    JIANG Lu-zhen, CHEN Jun, LI Jie. Shaking table test of utility tunnel under non-uniform seismic excitations(Ⅲ): numerical simulation[J]. Earthquake Engineering and Engineering Dynamics, 2010, 30(3): 45-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201003005.htm

    [18] 曹文冉, 田伟, 李春. 双向叠层剪切箱的研制及模型土体振动台试验研究[J]. 岩土工程学报, 2017, 39(增刊2): 249-253.

    CAO Wen-ran, TIAN Wei, LI Chun. Development of 2-D laminar shear box and shaking table tests on model soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 249-253. (in Chinese)

    [19] 国巍, 李绿宇, 邵平. 大型结构地震模拟振动台及台阵的试验精度分析[J]. 地震工程与工程振动, 2016, 36(2): 16-21.

    GUO Wei, LI Lu-yu, SHAO Ping. Precision analysis of large structure seismic experiment utilizing shaking table for earthquake simulation[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(2): 16-21. (in Chinese)

    [20] 陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001017.htm

    CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering. 2010, 32(1): 89-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001017.htm

    [21] 刘晶波, 王东洋, 谭辉, 等. 隧道纵向地震反应分析的整体式反应位移法[J]. 工程力学, 2018, 35(10): 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201810003.htm

    LIU Jing-bo, WANG Dong-yang, TAN Hui, et al. Integral response displacement method for longitudinal seismic response analysis of tunnel structure[J]. Engineering Mechanics, 2018, 35(10): 17-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201810003.htm

    [22] 谢礼立, 翟长海. 最不利设计地震动研究[J]. 地震学报, 2003, 25(3): 250-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200303002.htm

    XIE Li-li, ZHAI Chang-hai. Study on the severest real ground motion for seismic design and analysis[J]. Acta Seismologica Sinica, 2003, 25(3): 250-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200303002.htm

    [23] 翟长海, 谢礼立. 抗震结构最不利设计地震动研究[J]. 土木工程学报, 2005, 38(12): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200512009.htm

    ZHAI Chang-hai, XIE Li-li. The severest design ground motions for seismicdesign and analysisof structures[J]. China Civil Engineering Journal, 2005, 38(12): 51-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200512009.htm

    [24] 王国波, 袁明智, 苗雨. 结构-土-结构相互作用体系地震响应研究综述[J]. 岩土工程学报, 2018, 40(5): 837-847. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805010.htm

    WANG Guo-bo, YUAN Ming-zhi, MIAO Yu. Review of seismic response of structure-soil-structure interaction system[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 837-847. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805010.htm

    [25] 史晓军, 陈隽, 李杰. 地下综合管廊大型振动台模型试验研究[J]. 地震工程与工程振动, 2008, 28(6): 116-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200806017.htm

    SHI Xiao-jun, CHEN Jun, LI Jie. Shaking table test on underground utility tunnel[J]. Earthquake Engineering and Engineering Dynamics, 2008, 28(6): 116-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200806017.htm

    [26]

    CHEN G X, CHEN S, ZUO X, et al. Shaking-table tests and numerical simulations on a subway structure in soft soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 13-28.

  • 期刊类型引用(15)

    1. 牛广利,李天旸,薛广文,崔朋,秦朋,方豪文. 长距离引调水工程智能安全监控预警系统研发及应用. 长江科学院院报. 2025(02): 204-210 . 百度学术
    2. 张中昊,李赛,汪可欣. 蠕滑-地震动联合作用下跨断层输水隧洞衬砌结构损伤分析. 振动与冲击. 2025(04): 275-285 . 百度学术
    3. 司才龙,贾治元,贡力. 冰-水耦合作用下流冰对闸墩的撞击破坏力学特性响应. 科学技术与工程. 2025(07): 2943-2950 . 百度学术
    4. 李艳丽,章志明,桂单明. 基于组合赋权-云模型的城市配水工程质量评价研究. 中国农村水利水电. 2025(03): 14-22 . 百度学术
    5. 邓子昂,张继勋,张玉贤,孙艳鹏. 代理模型驱动的隧洞支护方案多目标优化方法. 水力发电学报. 2025(04): 59-71 . 百度学术
    6. 张书豪,艾亚鹏,陈健,靳春玲,姬照泰. 物元可拓法在引水隧洞围岩稳定性评价中的应用. 安全与环境学报. 2024(01): 10-18 . 百度学术
    7. 方腾卫,杨孟,张建伟,陈磊,曹克磊. TBM引水隧洞组合结构联合承载特性及荷载分担率研究. 广东水利水电. 2024(01): 31-38 . 百度学术
    8. 徐文韬,徐红超,石长征,伍鹤皋,张超,李端正. 有压引水隧洞多层柔性叠合衬砌对断层蠕滑错动的适应性研究. 岩土工程学报. 2024(05): 998-1007 . 本站查看
    9. 夏求林,吕兴栋,李平刚,周世华,高志扬. PVA纤维、减缩剂和轻烧氧化镁对水工衬砌混凝土性能影响对比研究. 水利水电技术(中英文). 2024(S1): 429-433 . 百度学术
    10. 黄邦辉,李志荣,左澍琼,邓开来,辜文兰,洪彧. 导水屏障调谐减震渡槽振动台试验. 清华大学学报(自然科学版). 2024(07): 1147-1156 . 百度学术
    11. 胡江,叶伟,马福恒. 长距离调水工程安全风险综合评估. 南水北调与水利科技(中英文). 2024(03): 417-426 . 百度学术
    12. 郑书闽,颜建国,郭鹏程,徐燕,李江,刘振兴. 基于VMD及深度学习的供水管道小尺度泄漏检测研究. 水利学报. 2024(08): 999-1008 . 百度学术
    13. 李颂章,李星霖,韦凡秋,罗亮明,夏裕栋. 基于数字图像修正HC法的水工隧洞围岩精细化分级研究. 中国农村水利水电. 2024(11): 227-232+246 . 百度学术
    14. 张剑,邹德兵,傅兴安,鲁伟. 超大城市水网深隧绿色建造与智慧工程设计. 水利水电技术(中英文). 2024(S2): 250-254 . 百度学术
    15. 包娟,钱波,段正刚,庄锦亮. 长距离输水管道水头损失计算可视化程序设计与应用. 云南水力发电. 2023(07): 124-127 . 百度学术

    其他类型引用(8)

图(16)  /  表(5)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  21
  • PDF下载量:  217
  • 被引次数: 23
出版历程
  • 收稿日期:  2019-03-06
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回