Three-dimensional rheological model for double-yield surface based on equivalent time
-
摘要: 为了同时描述土体剪缩剪胀及流变特性,运用Yin-Graham等效时间法建立了双屈服面三维流变模型。首先,以Yin-Graham三维流变方程作为反映剪缩机制的第一屈服面流变方程;其次,以Matsuoka-Nakai屈服准则作为反映剪胀机制的第二屈服面,以黏塑性功为硬化参数,采用非相关联流动法则,借鉴Mesri建模思路构建应力-黏塑性功-时间关系,利用等效时间法得到应力-黏塑性功-黏塑性功速率关系式,借助Perzyna过应力理论建立第二屈服面三维流变方程;再次,按照双屈服面模型理论将以上两个流变方程结合起来,提出一个基于等效时间的双屈服面三维流变模型,并利用经典的四阶Rung-Kutta方法编制差分计算程序,获得流变模型的数值解答;最后,利用加拿大膨润土及香港重塑海相沉积土三轴固结不排水流变试验将预测值与实测值进行对比,以验证该模型在流变试验中的适用性。结果表明:建立的流变模型可以较好地模拟不排水流变试验多级加载和单级加载发展过程以及土体剪缩剪胀特性。Abstract: In order to describe shear contractibility, dilatancy and rheological properties of soils, Yin-Graham’s equivalent time method is used to derive a three-dimensional rheological model for double-yield surface. Firstly, Yin-Graham’s three-dimensional rheological equation is used as the first yield surface rheological equation reflecting the shear-contraction mechanism. Secondly, Matsuoka-Nakai yield criterion is used as the second yield surface reflecting the dilatancy mechanism, viscoplastic work is used as hardening parameter and the non-associated flow rule is adopted, the stress-viscoplastic work-time relationship is proposed using Mesri’s modeling idea, stress-viscoplastic work-viscoplastic work rate relationship is obtained according to the equivalent time method, and the second yield surface three-dimensional rheological equation is established under Perzyna’s over-stress theory. Again, according to the theory of double-yield surface model, a three-dimensional rheological model of double-yield surface is proposed by combining the two rheological equations. The classical fourth-order Rung-Kutta method is used to compile the difference calculation program, and the numerical solution of the rheological model is obtained. Finally, the predictions are compared with the measured values by using triaxial consolidation undrained rheological test data of Canadian bentonite and remoulded Hong Kong marine deposits to verify the applicability of the model in rheological tests. The results show that the model can simulate the development process of multi-stage and single-stage loading in undrained rheological tests, and can reflect dilatancy and shear contractibility of soils.
-
-
表 1 试样的物理特性指标[23]
Table 1 Physical properties of sample
土样 重度/(kN·m-3) 含水率/% 饱和度/% 土粒相对密度 比容V0 泊松比 ν CB 16.46 22.3 99.4 2.70 1.609 0.3 表 2 部分模型参数[23]
Table 2 Part of model parameters
φ′ /(°)λ/V0 κ/V0 ψ/V0 p′mo /kPat0/h εvp1vo 15 0.05 0.025 0.0025 1900.77 24 0 表 3 模型参数
Table 3 Model parameters
m (k-kt)ult Ei A tr/h 0.02018 0.7658 0.0317 0.42 24 表 4 试样物理特性指标
Table 4 Physical properties of sample
土样 含水率/% 饱和度/% 土粒相对密度 比容V0 泊松比 ν RHKMD 48.3 98 2.66 2.216 0.3 表 5 模型参数
Table 5 Model parameters
λ/V0 κ/V0 ψ/V0 p′mo /kPat0/h εvp1vo 0.0793 0.018 0.0025 15.2 24 0 φ′ m (k−kt)ult Ei A tr/h 31.5° 0.0328 4.003 0.2565 0.58 24 -
[1] 孙德安, 申海娥. 上海软土的流变特性试验研究[J]. 水文地质工程地质, 2010, 37(3): 74-78. doi: 10.3969/j.issn.1000-3665.2010.03.016 SUN De-an, SHEN Hai-e. Experimental study on rheology behaviour of Shanghai soft clay[J]. Hydrogeology and Engineering Geology, 2010, 37(3): 74-78. (in Chinese) doi: 10.3969/j.issn.1000-3665.2010.03.016
[2] 殷宗泽. 土工原理[M]. 北京: 中国水利水电出版社, 2007. YIN Zong-ze. Geotechnical Principles[M]. Beijing: China Water & Power Press, 2007. (in Chinese)
[3] YIN Z Y, ZHU Q Y, ZHANG D M. Comparison of two creep degradation modeling approaches for soft structured soils[J]. Acta Geotechnica, 2017, 12(6): 1395-1413. doi: 10.1007/s11440-017-0556-y
[4] YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 04014162. doi: 10.1061/(ASCE)EM.1943-7889.0000885
[5] YIN J H, GRAHAM J. Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 736-745. doi: 10.1139/t99-042
[6] 杨爱武, 闫澍旺, 杜东菊. 结构性吹填软土蠕变模型研究[J]. 岩土力学, 2012, 33(11): 3213-3219. doi: 10.16285/j.rsm.2012.11.004 YANG Ai-wu, YAN Shu-wang, DU Dong-ju. Study of creep model of structural soft dredger fill[J]. Rock and Soil Mechanics, 2012, 33(11): 3213-3219. (in Chinese) doi: 10.16285/j.rsm.2012.11.004
[7] 柯文汇, 陈健, 盛谦. 结构性软黏土的一维弹黏塑性模型[J]. 岩土工程学报, 2016, 38(3): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603016.htm KE Wen-hui, CHEN Jian, SHENG Qian. One-dimensional elasto-viscoplastic model for structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 494-503. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603016.htm
[8] 尹振宇, 朱启银, 朱俊高. 软黏土蠕变特性试验研究:回顾与发展[J]. 岩土力学, 2013, 34(增刊2): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2002.htm YIN Zhen-yu, ZHU Qi-yin, ZHU Jun-gao. Experimental investigation on creep behavior of soft clays: review and development[J]. Rock and Soil Mechanics, 2013, 34(S2): 1-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2002.htm
[9] YIN J H, GRAHAM J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209. doi: 10.1139/t89-029
[10] MESRI G, REBRES-CORDERO E, SCHIELDS D R, et al. Shear stress-strain-time behavior of clays[J]. Géotechnique, 1981, 31(4): 537-552. doi: 10.1680/geot.1981.31.4.537
[11] 王常明, 王清, 张淑华. 滨海软土蠕变特性及蠕变模型[J]. 岩石力学与工程学报, 2004, 23(2): 227-230. doi: 10.3321/j.issn:1000-6915.2004.02.010 WANG Chang-ming, WANG Qing, ZHANG Shu-hua, Creep characteristics and creep model of marine soft soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 227-230. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.02.010
[12] 雷华阳, 贾亚芳, 李肖. 滨海软土非线性蠕变特性的试验研究[J]. 岩石力学与工程学报, 2013, 32(增刊1): 2806-2816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1029.htm LEI Hua-yang, JIA Ya-fang, LI Xiao. Experimental study of nonlinear creep property of soft soil in littoral area[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2806-2816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1029.htm
[13] 胡亚元. 剪切双曲线型等效时间流变模型[J]. 岩土工程学报, 2018, 40(8): 1549-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808026.htm HU Ya-yuan. Shear hyperbolic type equivalent-time rheological model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1549-1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808026.htm
[14] 沈珠江. 南水双屈服面模型及其应用[C]//海峡两岸土力学及基础工程地工技术学术研讨会论文集.西安, 1994. SHEN Zhu-jiang. The model of the NHRI Double Yield Surface and its Application[C]//Proceedings of the Symposium on Soil Mechanics and Foundation Engineering in the Two Sides of Taiwan Strait. Xi'an, 1994. (in Chinese)
[15] 殷宗泽. 一个土体的双屈服面应力-应变模型[J]. 岩土工程学报, 1988, 10(4): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198804006.htm YIN Zong-ze. A double yield surface stress-strain model for soils[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(4): 64-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198804006.htm
[16] HSIEH H S, KAVAZANJIAN E J, BORJA R I. Double- yield-surface Cam-clay plasticity model I: theory[J]. Journal of Geotechnical Engineering, 1990, 116(9): 1381-1401.
[17] KONG Y F, XU M, SONG E X. An elastic-viscoplastic double-yield-surface model for coarse-grained soils considering particle breakage[J]. Computers and Geotechnics, 2017, 85: 59-70.
[18] 詹美礼, 钱家欢, 陈绪禄. 软土流变特性试验及流变模型[J]. 岩土工程学报, 1993, 15(3): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199303006.htm ZHAN Mei-li, QIAN Jia-huan, CHEN Xu-lu. Tests on rheological behavior of soft soil and rheologic model[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 54-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199303006.htm
[19] 张军辉, 缪林昌. 连云港海相软土流变特性试验及双屈服面流变模型[J]. 岩土力学, 2005, 26(1): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX20050100X.htm ZHANG Jun-hui, MIAO Lin-chang. Tests on rheological behavior of Lianyungang marine soft clay and two- yield-surface rheological model[J]. Rock and Soil Mechanics, 2005, 26(1): 145-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX20050100X.htm
[20] 张坤勇, 文德宝, 马奇豪. 椭圆抛物双屈服面弹塑性模型三维各向异性修正及其试验验证[J]. 岩石力学与工程学报, 2013, 32(8): 1692-1700. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308024.htm ZHANG Kun-yong, WEN De-bao, MA Qi-hao. Three-dimensional anisotropic revision and experimental verification of elliptic parabolic double yield surface elastoplastic model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1692-1700. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308024.htm
[21] 胡亚元. n次齐次屈服函数相关联流动法则失效的机制研究[J]. 岩土工程学报, 2013, 35(2): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302009.htm HU Ya-yuan. Failure mechanism of associated flow rule for nth homogenous yield function[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 243-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302009.htm
[22] LADE P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. International Journal of Solids and Structures, 1977, 13(11): 1019-1035.
[23] YIN J H. Constitutive modelling of time-dependent stress- strain behavior of soils[D]. Winnipeg: The University of Manitoba Winnipeg, 1990.
[24] YU Hai-sui. 岩土塑性理论[M]. 周国庆, 刘恩龙, 商翔宇,译.北京: 科学出版社, 2018. YU Hai-sui. Plasticity and Geotechnics[M]. Zhou Guo-qing, LIU En-long, SHANG Xiang-yu, trans. Beijing: Science Press, 2018. (in Chinese)
[25] ZHU J G. Rheological behaviour and elastic viscoplastic modelling of soil[M]. Beijing: Science Press, 2007.
-
期刊类型引用(5)
1. 李晓强,梁靖宇,路德春,苗金波,杜修力. 非饱和土的非正交弹塑性本构模型. 中国科学:技术科学. 2022(07): 1048-1064 . 百度学术
2. 刘祎,蔡国庆,李舰,赵成刚. 非饱和土热–水–力全耦合本构模型及其验证. 岩土工程学报. 2021(03): 547-555 . 本站查看
3. 王壹敏,陈志敏,孙胜旗,赵运铎,张常书. 基于邓肯-张模型的低液限粉质黏土-砂的强度规律. 科学技术与工程. 2021(08): 3252-3257 . 百度学术
4. 胡小荣,蔡晓锋,瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型. 应用数学和力学. 2021(08): 813-831 . 百度学术
5. 杨光昌,白冰,刘洋,陈佩佩. 描述饱和砂土剪切特性的一个热力学本构模型. 哈尔滨工业大学学报. 2021(11): 93-100 . 百度学术
其他类型引用(7)