• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

膨润土膨胀力时程曲线的形态特征及其模拟

叶为民, 刘樟荣, 崔玉军, 张召, 王琼, 陈永贵

叶为民, 刘樟荣, 崔玉军, 张召, 王琼, 陈永贵. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. DOI: 10.11779/CJGE202001003
引用本文: 叶为民, 刘樟荣, 崔玉军, 张召, 王琼, 陈永贵. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. DOI: 10.11779/CJGE202001003
YE Wei-min, LIU Zhang-rong, CUI Yu-jun, ZHANG Zhao, WANG Qiong, CHEN Yong-gui. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. DOI: 10.11779/CJGE202001003
Citation: YE Wei-min, LIU Zhang-rong, CUI Yu-jun, ZHANG Zhao, WANG Qiong, CHEN Yong-gui. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. DOI: 10.11779/CJGE202001003

膨润土膨胀力时程曲线的形态特征及其模拟  English Version

基金项目: 

国家重大科研仪器研制项目 41527801

国家自然科学基金项目 41672271

国家自然科学基金项目 41807237

上海市浦江人才计划项目 18PJ1410200

详细信息
    作者简介:

    叶为民(1963— ),男,安徽枞阳人,教授,博士生导师,主要从事环境地质、非饱和土力学研究与教学工作。E-mail:ye_tju@tongji.edu.cn

    通讯作者:

    刘樟荣, E-mail:liuzr@tongji.edu.cn

  • 中图分类号: TU41

Features and modelling of time-evolution curves of swelling pressure of bentonite

  • 摘要: 为了研究膨润土膨胀力时程曲线的形态特征,采用恒体积法开展了不同干密度高庙子(GMZ)膨润土的膨胀力试验。试验结果表明,不同干密度高庙子膨润土的膨胀力时程曲线均呈典型的双峰形态:膨胀力先迅速增大至一个峰值,然后小幅回落或增速明显减小,随后再次升高并最终趋于稳定。膨胀力时程曲线的形态由膨胀力峰值、谷值、终值、峰值时间、谷值时间和终值时间等6个关键参数控制。在分析膨胀力形成机理及其发展规律的基础上,基于累积“楔”力与消散“楔”力相互叠加的原理,并假设累积“楔”力随水化时间呈指数分布,消散“楔”力随水化时间呈高斯分布,建立了一个膨胀力时程曲线的预测模型。该模型仅包含5个参数,均具有较明确的物理意义。根据试验结果和文献资料的验证结果表明,模型能够较好地模拟不同形态的膨胀力时程曲线。
    Abstract: In order to investigate the shape features of time-evolution curves of swelling pressure of bentonite, a series of swelling pressure tests on GMZ bentonite with different initial dry densities are carried out using the constant volume method. The results show that all the obtained time-evolution curves of swelling pressure are characterized by a typical two-peak shape: as the test starts, the swelling pressure increases sharply to a peak value, followed by decreasing to a valley value, after which it increases again to the final value. It is found that the shape of time-evolution curves of swelling pressure is controlled by 6 parameters: the peak, valley and final values of swelling pressure as well as their corresponding hydration times. According to the formation and development mechanisms of swelling pressure, a predictive model for the time-evolution curve with only 5 parameters is proposed. In this model, the swelling pressure is considered as the superposition result of accumulated and dissipated "wedge" pressures, which are assumed to be related to hydration time through an exponential and a Gaussian distribution function, respectively. The proposed model is verified by the experimental results from this paper and literatures, with satisfactory agreements between the measured results and predicted ones.
  • 图  1   恒体积法膨胀力测试装置

    Figure  1.   Experimental set-up for swelling pressure tests using constant volume method

    图  2   不同初始干密度高庙子膨润土的膨胀力时程曲线

    Figure  2.   Evolution of swelling pressure with time for GMZ bentonite with different initial dry densities

    图  3   膨胀力峰值、谷值和终值与初始干密度的关系

    Figure  3.   Relationship among peak, valley and final values of swelling pressure and initial dry density

    图  4   膨胀力峰值时间、谷值时间和终值时间与干密度的关系

    Figure  4.   Relationship among hydration time of peak, valley and final swelling pressures and initial dry density

    图  5   压实膨润土的微观结构

    Figure  5.   Microstructure of compacted bentonite

    图  6   试样含水率分布随时间的变化过程(t1<t2<t3<t4)

    Figure  6.   Evolution of water content distribution with time of samples under hydration (t1<t2<t3<t4)

    图  7   膨胀力时程曲线预测模型概念图

    Figure  7.   Conceptual view of predictive model for time-evolution curve of swelling pressure

    图  8   模型参数(α, βσ)与干密度的关系

    Figure  8.   Relationship between parameters (α, β and σ) and dry density

    图  9   不同干密度GMZ膨润土的膨胀力时程曲线实测结果与预测结果比较

    Figure  9.   Comparison between measured and predicted time-evolution curves of swelling pressure of GMZ bentonite with different dry densities

    图  10   GMZ01膨润土竖向膨胀力时程曲线拟合结果(实测数据摘自文献[16])

    Figure  10.   Fitting of time- evolution curves of vertical swelling pressure of GMZ01 bentonite (Measured data are from Reference [16])

    图  11   不同条件下膨润土膨胀力时程曲线拟合结果(实测数据摘自文献[11, 24~266],试样干密度均为1.70 g/cm3)

    Figure  11.   Fitting of time-evolution curves of swelling pressure of GMZ01 bentonite under different conditions (Measured data are from References [11, 24~266]. All the samples have a dry density of 1.70 g/cm3)

    表  1   膨胀力的峰值、谷值、终值及其对应的水化时间

    Table  1   Peak, valley and final values of swelling pressure and their corresponding hydration time for GMZ bentonite with different initial dry densities

    干密度/(g·cm-3)峰值/MPa谷值/MPa终值/MPa峰值时间/h谷值时间/h终值时间/h
    1.300.2320.1670.2374.6225.7540
    1.400.4370.3810.4267.7625.7350
    1.501.1981.0271.2448.3824.0262
    1.602.5972.3272.97310.3223.4560
    1.704.4134.3505.34411.9222.0856
    1.808.3098.6249.68812.0020.0046
    下载: 导出CSV

    表  2   模型参数拟合结果

    Table  2   Fitting parameters of proposed model

    干密度/(g·cm-3)Psf /MPaα /h-1β /MPaμ /hσ /hR2
    1.300.2360.435-0.07024.8927.8030.96
    1.400.4290.357-0.04629.9359.2030.97
    1.501.2420.369-0.23227.73910.7370.99
    1.602.9620.293-0.65424.98110.7400.99
    1.705.3100.201-0.92023.4319.5270.99
    1.809.6490.262-1.14816.7447.8260.99
    下载: 导出CSV
  • [1]

    YE W M, BORRELL N C, ZHU J Y, et al. Advances on the investigation of the hydraulic behavior of compacted GMZ bentonite[J]. Engineering Geology, 2014, 169(6): 41-49.

    [2] 杨玉玲, 杜延军, 范日东, 等. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(增刊2): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2041.htm

    YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al. Advances in permeability for bentonite-based hydraulic containment barriers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 210-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2041.htm

    [3] 张金利, 张林林, 谷鑫. 重金属Pb(II)在膨润土上去除特性研究[J]. 岩土工程学报, 2013, 35(1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301010.htm

    ZHANG Jin-li, ZHANG Lin-lin, GU Xin. Removal behaviors of heavy metal Pb(II) by use of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 117-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301010.htm

    [4]

    SRIDHARAN A, RAO A S, SIVAPULLAIAH P V. Swelling pressure of clays[J]. Geotechnical Testing Journal, 1986, 9(1): 24-33. doi: 10.1520/GTJ10608J

    [5] 岩土工程基本术语标准:GB/T 50279—2014[S]. 2014.

    Standard for Fundamental Terms of Geotechnical Engineering: GB/T 50279—2014[S]. 2014. (in Chinese)

    [6] 刘泉声, 王志俭. 砂-膨润土混合物膨胀力影响因素的研究[J]. 岩石力学与工程学报, 2002, 21(7): 1054-1058. doi: 10.3321/j.issn:1000-6915.2002.07.023

    LIU Quan-sheng, WANG Zhi-jian. Influence factors of sand-bentonite mixtures on the swelling pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 1054-1058. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.07.023

    [7]

    KOMINE H. Simplified evaluation for swelling characteristics of bentonites[J]. Engineering Geology, 2004, 71(3/4): 265-279.

    [8] 叶为民, SCHANZ T, 钱丽鑫, 等. 高压实高庙子膨润土GMZ01的膨胀力特征[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3861-3865. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2039.htm

    YE Wei-min, SCHANZ T, QIAN Li-xin, et al. Characteristics of swelling pressure of densely compacted Gaomiaozi bentonite GMZ01[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3861-3865. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2039.htm

    [9]

    VILLAR M V, LLORET A. Influence of dry density and water content on the swelling of a compacted bentonite[J]. Applied Clay Science, 2008, 39(1/2): 38-49.

    [10]

    YE W M, WAN M, CHEN B, et al. Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite[J]. Environmental Earth Sciences, 2013, 68(1): 281-288. doi: 10.1007/s12665-012-1738-4

    [11]

    WANG Q, TANG A M, CUI Y J, et al. Experimental study on the swelling behaviour of bentonite/claystone mixture[J]. Engineering Geology, 2012, 124(1): 59-66.

    [12]

    PUSCH, R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19(3): 381-387. doi: 10.1139/t82-041

    [13] 刘毅. 高庙子膨润土水化膨胀特性及其微观机理研究[J]. 工程地质学报, 2016, 24(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603016.htm

    LIU Yi. Investigation on the swelling properties and microsturcture mechanism of compacted gaomiaozi bentonite[J]. Journal of Engineering Geology, 2016, 24(3): 451-458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603016.htm

    [14]

    VILLAR M V, GÓMEZ-ESPINA R, LLORET A. Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 71-78.

    [15]

    KOMINE H, OGATA N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31(4): 478-490. doi: 10.1139/t94-057

    [16] 秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土GMZ001三向膨胀力特性研究[J]. 岩土工程学报, 2009, 31(5): 756-763. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200905024.htm

    QIN Bing, CHEN Zhen-han, LIU Yue-miao, et al. Characteristics of 3D swelling pressure of GMZ001 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 756-763. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200905024.htm

    [17] 陈永贵, 蒯琪, 叶为民, 等. 高压实膨润土膨胀力预测研究[J]. 同济大学学报(自然科学版), 2018, 46(12): 1628-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm

    CHEN Yong-gui, KUAI Qi, YE Wei-min, et al. Prediction of swelling presure for compacted bentonite[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1628-1636. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm

    [18]

    YE W M, CHEN Y G, CHEN B, et al. Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite[J]. Engineering Geology, 2010, 116(1): 12-20.

    [19] 叶为民, 钱丽鑫, 陈宝, 等. 高压实高庙子膨润土的微观结构特征[J]. 同济大学学报(自然科学版), 2009, 37(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200901007.htm

    YE Wei-min, QIAN Li-xin, CHEN Bao, et al. Characteristics of micro-structure of densely compacted Gaomiaozi bentonite[J]. Journal of Tongji University (Natural Science), 2009, 37(1): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200901007.htm

    [20]

    SAIYOURI N, TESSIER D, HICHER P Y. Experimental study of swelling in unsaturated compacted clays[J]. Clay Minerals, Mineralogical Society, 2004, 39(4): 469-479.

    [21] 丁振洲, 郑颖人, 李利晟. 膨胀力变化规律试验研究[J]. 岩土力学, 2007, 28(7): 1328-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200707007.htm

    DING Zhen-zhou, ZHENG Ying-ren, LI Li-sheng. Trial study on variation regularity of swelling force[J]. Rock and Soil Mechanics, 2007, 28(7): 1328-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200707007.htm

    [22]

    LLORET A, VILLAR M V, SÁNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27-40.

    [23]

    SCHANZ T, AL-BADRAN Y. Swelling pressure characteristics of compacted Chinese Gaomiaozi bentonite GMZ01[J]. Soils and Foundations, 2014, 54(4): 748-759.

    [24]

    XU L, YE W M, CHEN B, et al. Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials[J]. Engineering Geology, 2016, 213: 46-54.

    [25]

    YE W M, ZHENG Z J, CHEN B, et al. Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Applied Clay Science, 2014, 101: 192-198.

    [26]

    ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166: 74-80.

    [27]

    IMBERT C, VILLAR M V. Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration[J]. Applied Clay Science, 2006, 32: 197-209.

图(11)  /  表(2)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  35
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-14
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回