Features and modelling of time-evolution curves of swelling pressure of bentonite
-
摘要: 为了研究膨润土膨胀力时程曲线的形态特征,采用恒体积法开展了不同干密度高庙子(GMZ)膨润土的膨胀力试验。试验结果表明,不同干密度高庙子膨润土的膨胀力时程曲线均呈典型的双峰形态:膨胀力先迅速增大至一个峰值,然后小幅回落或增速明显减小,随后再次升高并最终趋于稳定。膨胀力时程曲线的形态由膨胀力峰值、谷值、终值、峰值时间、谷值时间和终值时间等6个关键参数控制。在分析膨胀力形成机理及其发展规律的基础上,基于累积“楔”力与消散“楔”力相互叠加的原理,并假设累积“楔”力随水化时间呈指数分布,消散“楔”力随水化时间呈高斯分布,建立了一个膨胀力时程曲线的预测模型。该模型仅包含5个参数,均具有较明确的物理意义。根据试验结果和文献资料的验证结果表明,模型能够较好地模拟不同形态的膨胀力时程曲线。Abstract: In order to investigate the shape features of time-evolution curves of swelling pressure of bentonite, a series of swelling pressure tests on GMZ bentonite with different initial dry densities are carried out using the constant volume method. The results show that all the obtained time-evolution curves of swelling pressure are characterized by a typical two-peak shape: as the test starts, the swelling pressure increases sharply to a peak value, followed by decreasing to a valley value, after which it increases again to the final value. It is found that the shape of time-evolution curves of swelling pressure is controlled by 6 parameters: the peak, valley and final values of swelling pressure as well as their corresponding hydration times. According to the formation and development mechanisms of swelling pressure, a predictive model for the time-evolution curve with only 5 parameters is proposed. In this model, the swelling pressure is considered as the superposition result of accumulated and dissipated "wedge" pressures, which are assumed to be related to hydration time through an exponential and a Gaussian distribution function, respectively. The proposed model is verified by the experimental results from this paper and literatures, with satisfactory agreements between the measured results and predicted ones.
-
Keywords:
- bentonite /
- swelling pressure /
- time-evolution curve /
- shape feature /
- predictive model
-
-
表 1 膨胀力的峰值、谷值、终值及其对应的水化时间
Table 1 Peak, valley and final values of swelling pressure and their corresponding hydration time for GMZ bentonite with different initial dry densities
干密度/(g·cm-3) 峰值/MPa 谷值/MPa 终值/MPa 峰值时间/h 谷值时间/h 终值时间/h 1.30 0.232 0.167 0.237 4.62 25.75 40 1.40 0.437 0.381 0.426 7.76 25.73 50 1.50 1.198 1.027 1.244 8.38 24.02 62 1.60 2.597 2.327 2.973 10.32 23.45 60 1.70 4.413 4.350 5.344 11.92 22.08 56 1.80 8.309 8.624 9.688 12.00 20.00 46 表 2 模型参数拟合结果
Table 2 Fitting parameters of proposed model
干密度/(g·cm-3) /MPa /h-1 /MPa /h /h R2 1.30 0.236 0.435 -0.070 24.892 7.803 0.96 1.40 0.429 0.357 -0.046 29.935 9.203 0.97 1.50 1.242 0.369 -0.232 27.739 10.737 0.99 1.60 2.962 0.293 -0.654 24.981 10.740 0.99 1.70 5.310 0.201 -0.920 23.431 9.527 0.99 1.80 9.649 0.262 -1.148 16.744 7.826 0.99 -
[1] YE W M, BORRELL N C, ZHU J Y, et al. Advances on the investigation of the hydraulic behavior of compacted GMZ bentonite[J]. Engineering Geology, 2014, 169(6): 41-49.
[2] 杨玉玲, 杜延军, 范日东, 等. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(增刊2): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2041.htm YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al. Advances in permeability for bentonite-based hydraulic containment barriers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 210-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2041.htm
[3] 张金利, 张林林, 谷鑫. 重金属Pb(II)在膨润土上去除特性研究[J]. 岩土工程学报, 2013, 35(1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301010.htm ZHANG Jin-li, ZHANG Lin-lin, GU Xin. Removal behaviors of heavy metal Pb(II) by use of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 117-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301010.htm
[4] SRIDHARAN A, RAO A S, SIVAPULLAIAH P V. Swelling pressure of clays[J]. Geotechnical Testing Journal, 1986, 9(1): 24-33. doi: 10.1520/GTJ10608J
[5] 岩土工程基本术语标准:GB/T 50279—2014[S]. 2014. Standard for Fundamental Terms of Geotechnical Engineering: GB/T 50279—2014[S]. 2014. (in Chinese)
[6] 刘泉声, 王志俭. 砂-膨润土混合物膨胀力影响因素的研究[J]. 岩石力学与工程学报, 2002, 21(7): 1054-1058. doi: 10.3321/j.issn:1000-6915.2002.07.023 LIU Quan-sheng, WANG Zhi-jian. Influence factors of sand-bentonite mixtures on the swelling pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 1054-1058. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.07.023
[7] KOMINE H. Simplified evaluation for swelling characteristics of bentonites[J]. Engineering Geology, 2004, 71(3/4): 265-279.
[8] 叶为民, SCHANZ T, 钱丽鑫, 等. 高压实高庙子膨润土GMZ01的膨胀力特征[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3861-3865. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2039.htm YE Wei-min, SCHANZ T, QIAN Li-xin, et al. Characteristics of swelling pressure of densely compacted Gaomiaozi bentonite GMZ01[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3861-3865. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2039.htm
[9] VILLAR M V, LLORET A. Influence of dry density and water content on the swelling of a compacted bentonite[J]. Applied Clay Science, 2008, 39(1/2): 38-49.
[10] YE W M, WAN M, CHEN B, et al. Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite[J]. Environmental Earth Sciences, 2013, 68(1): 281-288. doi: 10.1007/s12665-012-1738-4
[11] WANG Q, TANG A M, CUI Y J, et al. Experimental study on the swelling behaviour of bentonite/claystone mixture[J]. Engineering Geology, 2012, 124(1): 59-66.
[12] PUSCH, R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19(3): 381-387. doi: 10.1139/t82-041
[13] 刘毅. 高庙子膨润土水化膨胀特性及其微观机理研究[J]. 工程地质学报, 2016, 24(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603016.htm LIU Yi. Investigation on the swelling properties and microsturcture mechanism of compacted gaomiaozi bentonite[J]. Journal of Engineering Geology, 2016, 24(3): 451-458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201603016.htm
[14] VILLAR M V, GÓMEZ-ESPINA R, LLORET A. Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 71-78.
[15] KOMINE H, OGATA N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31(4): 478-490. doi: 10.1139/t94-057
[16] 秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土GMZ001三向膨胀力特性研究[J]. 岩土工程学报, 2009, 31(5): 756-763. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200905024.htm QIN Bing, CHEN Zhen-han, LIU Yue-miao, et al. Characteristics of 3D swelling pressure of GMZ001 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 756-763. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200905024.htm
[17] 陈永贵, 蒯琪, 叶为民, 等. 高压实膨润土膨胀力预测研究[J]. 同济大学学报(自然科学版), 2018, 46(12): 1628-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm CHEN Yong-gui, KUAI Qi, YE Wei-min, et al. Prediction of swelling presure for compacted bentonite[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1628-1636. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm
[18] YE W M, CHEN Y G, CHEN B, et al. Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite[J]. Engineering Geology, 2010, 116(1): 12-20.
[19] 叶为民, 钱丽鑫, 陈宝, 等. 高压实高庙子膨润土的微观结构特征[J]. 同济大学学报(自然科学版), 2009, 37(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200901007.htm YE Wei-min, QIAN Li-xin, CHEN Bao, et al. Characteristics of micro-structure of densely compacted Gaomiaozi bentonite[J]. Journal of Tongji University (Natural Science), 2009, 37(1): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200901007.htm
[20] SAIYOURI N, TESSIER D, HICHER P Y. Experimental study of swelling in unsaturated compacted clays[J]. Clay Minerals, Mineralogical Society, 2004, 39(4): 469-479.
[21] 丁振洲, 郑颖人, 李利晟. 膨胀力变化规律试验研究[J]. 岩土力学, 2007, 28(7): 1328-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200707007.htm DING Zhen-zhou, ZHENG Ying-ren, LI Li-sheng. Trial study on variation regularity of swelling force[J]. Rock and Soil Mechanics, 2007, 28(7): 1328-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200707007.htm
[22] LLORET A, VILLAR M V, SÁNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27-40.
[23] SCHANZ T, AL-BADRAN Y. Swelling pressure characteristics of compacted Chinese Gaomiaozi bentonite GMZ01[J]. Soils and Foundations, 2014, 54(4): 748-759.
[24] XU L, YE W M, CHEN B, et al. Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials[J]. Engineering Geology, 2016, 213: 46-54.
[25] YE W M, ZHENG Z J, CHEN B, et al. Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Applied Clay Science, 2014, 101: 192-198.
[26] ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166: 74-80.
[27] IMBERT C, VILLAR M V. Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration[J]. Applied Clay Science, 2006, 32: 197-209.