• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水压作用对通缝拼装管片结构力学性能的影响研究

梁坤, 封坤, 肖明清, 何川, 谢俊, 方若全

梁坤, 封坤, 肖明清, 何川, 谢俊, 方若全. 水压作用对通缝拼装管片结构力学性能的影响研究[J]. 岩土工程学报, 2019, 41(11): 2037-2045. DOI: 10.11779/CJGE201911008
引用本文: 梁坤, 封坤, 肖明清, 何川, 谢俊, 方若全. 水压作用对通缝拼装管片结构力学性能的影响研究[J]. 岩土工程学报, 2019, 41(11): 2037-2045. DOI: 10.11779/CJGE201911008
LIANG Kun, FENG Kun, XIAO Ming-qing, HE Chuan, XIE Jun, FANG Ruo-quan. Water-pressure action on structural behaviors of straight assembling segmental linings of underwater shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2037-2045. DOI: 10.11779/CJGE201911008
Citation: LIANG Kun, FENG Kun, XIAO Ming-qing, HE Chuan, XIE Jun, FANG Ruo-quan. Water-pressure action on structural behaviors of straight assembling segmental linings of underwater shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2037-2045. DOI: 10.11779/CJGE201911008

水压作用对通缝拼装管片结构力学性能的影响研究  English Version

基金项目: 国家电网公司科技项目(SHJJGC1700023)
详细信息
    作者简介:

    梁 坤(1993— ),男,硕士研究生,研究方向为盾构隧道结构设计理论研究。E-mail: kunliang556324@outlook.com。

    通讯作者:

    封坤,E-mail:windfeng813@163.com

  • 中图分类号: TU43;U455

Water-pressure action on structural behaviors of straight assembling segmental linings of underwater shield tunnels

  • 摘要: 以苏通GIL综合管廊工程为背景开展了通缝拼装方式下的原型试验,从水压对管片环的受力、形变及抗裂性方面着手,对通缝拼装条件下水压力对管片结构力学性能影响进行了研究。试验结果表明:①通缝拼装管片结构在拱顶位置出现较大的位移,水压力的增大对管片结构拱顶形变和整体椭圆变形的控制有良好的效果,但管片最大单点位移相比椭圆度更易达到限值;②通缝拼装管片结构建议取单点最大形变率2‰~2.5‰作为形变控制标准;③在高水压作用下通缝拼装管片结构的纵缝张开主要发生在封顶块附近,由于该处纵缝密集、结构刚度最小、变形最大所致,水压力的增大对该处纵缝张开有明显的限制作用,且可减小相应连接螺栓的受力;④水压力的增大会较大幅度地提升管片的抗裂性能,并减小管片主筋的拉应力,但也会使主筋的压应力和箍筋应力有较大幅度的升高;⑤水压力的升高在一定程度上提高了管片结构的受力性能,但高水压使管片结构处于高轴压受力状态,易发生纵缝处的压剪破坏,该破坏具突发性。研究成果对水下盾构隧道的设计具有重要的指导意义。
    Abstract: For Suzhou-Nantong GIL power gallery tunnel, the prototype tests using the straight assembling segmental lining method are carried out. From the aspect of water pressures on the force, deformation and crack resistance of the segmental structure, the influences of water pressures on the mechanical properties of the segmental structure under the straight joint assembling condition are studied. The results show that: (1) The straight assembling segmental lining has a large displacement at the position of dome, and increasing the water pressures can effectively control the dome deformation and the overall elliptical deformation of the segmental structure. However, the maximum single point displacement of the segment is easier to reach the limit than the ellipticity. (2) It is recommended to take the single-point maximum deformation rate of 2‰~2.5‰ as the deformation control standard. (3) Under the effects of high water pressures, the joint opening of the segmental structure mainly occurs near the K-block, which is caused by dense joints, the minimum structural rigidity and the maximum deformation. The increase in the water pressures has a significant limiting effect on the longitudinal joint opening, and can reduce the force of the corresponding connecting bolts. (4) Increasing the water pressures will greatly improve the crack resistance of the segmental structure and reduce the tensile stress of the main reinforcement of the segmental structure, but it will also increase its compressive stress and hoop stress. (5) The increase in the water pressures improves the mechanical properties of the segment structure to a certain extent. However, the high water pressures cause the segmental structure to be in a state of high axial compression, which is prone to crushing and shearing at the joint and the damage is sudden. The research results have important guiding significance for the design of underwater shield tunnels.
  • [1] 何川, 封坤. 大型水下盾构隧道结构研究现状与展望[J]. 西南交通大学学报, 2011, 46(1): 1-11.
    (HE Chuan, FENG Kun.Review and prospect of structure research of underwater shield tunnel with large cross-section[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 1-11. (in Chinese))
    [2] ITA-Working Group Research. Processed recommendation for design of lining of shield tunnel[R]. Lausanne: Tunneling Association, 1997: 1-26.
    [3] 谢红强, 何川, 李围. 江底盾构隧道施工期外水压分布规律的现场试验研究[J]. 岩土力学, 2006, 27(10): 1851-1855.
    (XIE Hong-qiang, HE Chuan, LI Wei.Experimental study on distribution of external water pressure around sub-river shield tunnel in construction period[J]. Rock and Soil Mechanics, 2006, 27(10): 1851-1855. (in Chinese)).
    [4] 周济民. 水下盾构法隧道双层衬砌结构力学特性[D]. 成都:西南交通大学, 2012.
    (ZHOU Ji-ming.Mechanical properties of double layer lining of underwater shield tunnel[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese))
    [5] 封坤. 大断面水下盾构隧道管片衬砌结构的力学行为研究[D]. 成都: 西南交通大学, 2012.
    (FENG Kun.Research on mechanical behavior of segmental lining structure for underwater shield tunnel with large cross-section[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese))
    [6] 张建刚, 何川. 高水压大断面盾构隧道管片衬砌结构静力学行为模型试验研究[J]. 水文地质工程地质, 2009, 36(4): 80-84.
    (ZHANG Jian-gang, HE Chuan.Experimental study on static behavior model of segment lining structure of high water pressure large section shield tunnel[J]. Hydro Geological Engineering Geology, 2009, 36(4): 80-84. (in Chinese))
    [7] 唐长东. 高水压盾构隧道整环管片的力学特性研究[D]. 广州: 华南理工大学, 2012.
    (TANG Chang-dong.Study on mechanical properties of high pressure of shield tunnel segment domain[D]. Guangzhou: South China University of Technology, 2012. (in Chinese))
    [8] 周济民, 何川, 肖明清, 等. 狮子洋水下盾构隧道衬砌结构受力的现场测试与计算分析[J]. 铁道学报, 2012, 34(7): 115-121.
    (ZHOU Ji-min, HE Chuan, XIAO Ming-qing, et al.The field test and calculation analysis of the force of the lining structure of the underwater shield tunnel in the lion ocean[J]. Journal of Railway Science, 2012, 34(7): 115-121. (in Chinese))
    [9] 彭博. 水下盾构隧道管片衬砌结构渐进性破坏机理研究[D]. 成都: 西南交通大学, 2015.
    (PENG Bo.Research on progressive damage of segment linling of underwater shield tunnel[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese))
    [10] 黄清飞, 袁大军, 王梦恕. 水位对盾构隧道管片结构内力影响研究[J]. 岩土工程学报, 2008, 30(8): 1112-1120.
    (HUANG Qin-fei, YUAN Da-jun, WANG Meng-shu.Influence of water level on internal force of segments of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1112-1120. (in Chinese))
    [11] 曾东洋, 何川. 盾构隧道衬砌结构内力计算方法的对比分析研究[J]. 地下空间与工程学报, 2005, 1(5): 707-712.
    (ZENG Dong-yang, HE Chuan.Comparsion and analysis research of different shield tunnel lining internal forces design methods[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(5): 707-712. (in Chinese))
    [12] 王士民, 姚佳兵, 何祥凡, 等. 水压对盾构管片衬砌力学特征与破坏形态的影响模型试验研究[J]. 土木工程学报, 2018, 51(4): 111-120.
    (WANG Shi-min, YAO Jia-bing, HE Xiang-fan, et al.Research on the mechanical property and failure mode of shield tunnels with different hydraulic pressure by model test[J]. China Civil Engineering Journal, 2018, 51(4): 111-120. (in Chinese))
    [13] 封坤, 何川, 苏宗贤. 南京长江隧道原型管片结构破坏试验研究[J]. 西南交通大学学报, 2011, 46(4): 564-571.
    (FENG Kun, HE Chuan, SU Zong-xian.Prototype test on failure characteristic of segmental lining structure for Nanjing Yangtze River Tunnel[J]. Journal of Southwest Jiaotong University, 2011, 46(4): 564-571. (in Chinese))
    [14] 何川, 封坤, 晏启祥. 高速铁路水下盾构隧道管片内力分布规律研究[J]. 铁道学报, 2012, 34(4): 101-109.
    (HE Chuan, FENG Kun, YAN Qi-xiang.Study on Inner force distribution of segmental lining of high-speed railway underwater shield tunnel[J]. Journal of the China Railway Society, 2012, 34(4): 101-109. (in Chinese))
    [15] 毕湘利, 柳献, 王志秀, 等. 通缝拼装盾构隧道结构极限承载力的足尺试验研究[J]. 土木工程学报, 2014, 47(10): 117-127.
    (BI Xiang-li, LIU Xian, WANG Zhi-xiu, et al.Experimental investigation on the ultimate bearing capacity of continuous-jointed segmental tunnel linings[J]. China Civil Engineering Journal, 2014, 47(10): 117-127. (in Chinese))
    [16] LIU Xian, DONG Zi-bo, BAI Yun, et al.Investigation of the structural effect induced by stagger joints in segmental tunnel linings: first results from full-scale ring tests[J]. Tunnelling and Underground Space Technology, 2017, 66: 1-18.
    [17] 何川, 封坤, 苏宗贤. 大断面水下盾构隧道原型结构加载试验系统的研发与应用[J]. 岩石力学与工程学报, 2011, 30(2): 254-266.
    (HE Chuan, FENG Kun, SU Zong-xian.Development and application of loading test system of prototype structure for underwater shield tunnel with large section-cross[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 254-266. (in Chinese))
    [18] GB 50446—2017 盾构法隧道施工与验收规范[S]B 50446—2017 盾构法隧道施工与验收规范[S]. 北京: 中国建筑工业出版社, 2017.
    (GB 50446—2017 Shield tunnel construction and acceptance specification[S]B 50446—2017 Shield tunnel construction and acceptance specification[S]. Beijing: China Architecture and Building Press, 2017. (in Chinese))
    [19] 张旭辉, 杨志豪, 洪弼宸, 等. 盾构隧道结构健康评价的变形指标研究[J]. 隧道与轨道交通, 2014(4): 7-13.
    (ZHANG Xu-hui, YANG Zhi-hao, HONG Bi-chen, et al.Study on deformation index of shield tunnel structural health evaluation[J]. Underground Engineering and Tunnels, 2014(4): 7-13. (in Chinese))
    [20] 邓朝辉. 盾构隧道管片接缝防水设计[J]. 铁道建筑技术, 2008(增刊1): 157-159, 163.
    (DENG Zhao-hui.Waterproof design of joints of shield tunnel segments[J]. Railway Construction Technology, 2008(S1): 157-159, 163. (in Chinese))
    [21] WEI H, WANG Y, LUO J.Influence of magnetic water on early-age shrinkage cracking of concrete[J]. Construction and Building Materials, 2017, 147: 91-100.
  • 期刊类型引用(6)

    1. 张志红,王树青,杨凡. 基于Furnas方程和分形理论的级配优化方法及试验验证. 土木工程学报. 2023(01): 109-118 . 百度学术
    2. 张文周,何忠明,刘正夫,刘洋. 炭质泥岩粗粒土动态回弹模量及预估模型研究. 水利水电技术(中英文). 2023(02): 161-169 . 百度学术
    3. 陈晓斌,郭云鹏,蔡德钩,尧俊凯,肖源杰. 铁路工程粗颗粒土路基填料研究现状与发展综述. 路基工程. 2021(03): 1-11 . 百度学术
    4. 王萌,肖源杰,王小明,蔡德钩,陈晓斌. 道砟压实质量与颗粒运动关联特征及内在机制研究. 铁道科学与工程学报. 2021(08): 2055-2065 . 百度学术
    5. 王萌,肖源杰,卢小永,畅振兴,陈晓斌,古牧,叶新宇. 重载铁路道砟旋转压实特性及参数优化试验研究. 铁道科学与工程学报. 2020(10): 2503-2515 . 百度学术
    6. 肖建章,蔡红,孙平,魏然,严俊. 不良级配颗分曲线的方程表述. 水利水电技术. 2020(S2): 416-421 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  247
  • HTML全文浏览量:  7
  • PDF下载量:  174
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-03-10
  • 发布日期:  2019-11-24

目录

    /

    返回文章
    返回